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Abstract
The main purpose of this paper is to investigate the Fourier series representation of
the generalized Apostol-type Frobenius–Euler polynomials, and using the
above-mentioned series we find its integral representation. At the same time applying
the Fourier series representation of the Apostol Frobenius–Genocchi and Apostol
Genocchi polynomials, we obtain its integral representation. Furthermore, using the
Hurwitz–Lerch zeta function we introduce the formula in rational arguments of the
generalized Apostol-type Frobenius–Euler polynomials in terms of the Hurwitz zeta
function. Finally, we show the representation of rational arguments of the Apostol
Frobenius Euler polynomials and the Apostol Frobenius–Genocchi polynomials.

Keywords: Generalized Apostol Frobenius–Euler polynomials; Hurwitz zeta function;
Fourier expansion; Generalized Apostol Frobennius–Euler numbers

1 Introduction
The Fourier series of a periodic function can be written exponentially as (see [9, p. 19,
Eq. (2.2)])

f (x) =
∞∑

n=–∞
aneinwx;

(
w =

2π

T

)
,

the coefficients an and an are computed by

an =
1
T

∫ 2π
w

0
e–inwtf (t) dt and an =

1
T

∫ 2π
w

0
einwtf (t) dt.

Here an is the complex conjugate of an.
The Frobenius–Euler polynomials and the Frobenius–Euler numbers play an important

role in the number of theories and classical analysis. In particular, the Frobenius–Euler
polynomials appear in the integral representation of differentiable periodic functions since
they are employed for approximating such functions in terms of polynomials (see [1, 4–
6, 10, 13, 19]). The Frobenius–Euler polynomials Hn(x; u) in the variable x are defined by
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means of the generating function (see [11, p. 268])

(
1 – u
ez – u

)
exz =

∞∑

n=0

Hn(x; u)
zn

n!
, |z| <

∣∣log(u)
∣∣, (1)

when x = 0, Hn(u) denotes the so-called Frobenius–Euler numbers. Hn(x; –1) = En(x) de-
notes the Euler polynomials (see [16, 17]).

The Fourier series representation of the Frobenius–Euler polynomials are given by (see
[2, p. 8, Corollary 4])

Hn(x; u) =
(u – 1)

u
uxn!

∑

k∈Z

e2π ikx

[2π ik + log(u)]n+1 , (2)

if u,∈ C with u �= 1, and 0 < x < 1.
The Frobenius–Genocchi polynomials GF

n(x; u) in the variable x are defined by the gen-
erating function (see [2, p. 3, Definition 3])

(
1 – u
ez – u

)
zexz =

∞∑

n=0

G
F
n(x; u)

zn

n!
; |z| <

∣∣log(u)
∣∣, (3)

when x = 0, GF
n(u) denotes the so-called Frobenius–Genocchi numbers, then the Fourier

series representation of (3) is given by

G
F
n(x; u) =

(u – 1)
u

uxn!
∑

k∈Z

e2π ikx

[2π ik + log(u)]n . (4)

Some authors have proved a Fourier series and integral representations for the Apostol–
Euler polynomials and Apostol–Bernoulli polynomials by using the Lipschitz summation
formula (see [14]). On the other hand, in [3] using the Cauchy residue theorem in the
complex plane, the author proved a Fourier series for the Apostol–Bernoulli, Apostol–
Genocchi and Apostol–Euler polynomials. Other authors revealed a Fourier expansion
for Apostol Frobenius–Euler polynomials and Apostol Frobenius–Genocchi polynomials
(cf. [2]). We recently studied the Fourier expansions for higher-order Apostol–Genocchi,
Apostol–Bernoulli and Apostol–Euler polynomials (see [8]).

In this paper, we obtained the Fourier expansion of generalized Apostol-type Frobenius–
Euler polynomials and its integral representation to show the explicit formula at rational
arguments for these polynomials in terms of the Hurwitz zeta function. Also, we will show
the integral representation of Apostol Frobenius–Euler, Apostol Frobenius–Genocchi,
Frobenius–Genocchi, Frobenius–Euler polynomials, and give a new representation for
the polynomials of Apostol–Euler and Apostol–Genocchi and some formulas in rational
arguments.

This article is organized as follows. Section 2 contains the basic background about
polynomials of Apostol-type Frobenius–Euler, Apostol Frobenius–Genocchi, Frobenius–
Genocchi, Frobenius–Euler and generalized Apostol-type Frobenius–Euler polynomials
in the variable x, parameters λ, u ∈C, a, b, c ∈R+. In Sect. 3 are revealed the Fourier expan-
sions for the generalized Apostol-type Frobenius–Euler polynomials, and several corollar-
ies for other families of known polynomials. In Sect. 4, we obtain the integral represen-
tation of generalized Apostol-type Frobenius–Euler polynomials, that is, Theorem 4.1.
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At the same time, we achieved the integral representation of the Frobenius–Euler and
Frobenius–Genocchi polynomials, that is, Theorems 4.2 and 4.3. Also, Sect. 5 secures the
explicit formula at rational arguments in terms of Hurwitz zeta function of generalized
Apostol-type Frobenius–Euler polynomials, that is, Theorem 5.1. Finally, we obtained the
formula in rational arguments for the Frobenius–Euler and Frobenius–Genocchi polyno-
mials, that is, Theorems 5.2 and 5.3, respectively.

2 Background and previous results
Throughout this paper, we use the following standard notions: N = {1, 2, . . .}, N0 =
{0, 1, 2, . . .}, Z denotes the set of integers, R denotes the set of real numbers, C denotes the
set of complex numbers. For the complex logarithm, we consider the principal branch.

On the other hand, we have the well-known integral formula (see [15, p. 2198, Eq. (3.2)])

∫ ∞

0
tne–at dt =

n!
an+1 , n ∈N0;�e(a) > 0. (5)

It is well known that Apostol-type Frobenius–Euler polynomials Hn(x; u;λ) in the vari-
able x are defined by means of the generating function (see [4, p. 164, Eq. (1.1)])

(
1 – u

λez – u

)
exz =

∞∑

n=0

Hn(x; u;λ)
zn

n!
, |z| <

∣∣∣∣log

(
λ

u

)∣∣∣∣. (6)

The Fourier series representation of the Apostol-type Frobenius–Euler polynomials is
given by (see [2, p. 5, Theorem 1])

Hn(x; u;λ) =
(u – 1)

u
ux

λx n!
∑

k∈Z

e2π ikx

[2π ik – log( λ
u )]n+1

. (7)

Also, the Fourier series representation of Apostol-type Frobenius–Genocchi polynomi-
als is given by (see [2, p. 13, Theorem 11])

G
F
n(x; u;λ) =

(u – 1)
u

ux

λx n!
∑

k∈Z

e2π ikx

[2π ik – log( λ
u )]n

, (8)

which makes sense if u,λ ∈C with u �= 1, λ �= 1, u �= λ and 0 < x < 1.
For parameters λ, u ∈ C, u �= λ and a, b, c ∈ R

+ whit a �= b, of generalized Apostol-type
Frobenius–Euler polynomials are defined by means of the following generating functions
(see [18, p. 9, Definition 4.1]):

(
az – u
λbz – u

)
cxz =

∞∑

n=0

Hn(x; a, b, c; u;λ)
zn

n!
, |z| <

∣∣∣∣
log( λ

u )
ln b

∣∣∣∣, (9)

if x = 0 in (9) then we get Hn(a, b, c; u;λ), which denotes the generalized Apostol-type
Frobenius–Euler numbers (see [18, p. 9]).

For n = 0 and a, b ∈R
+, whit a �= b, u,λ ∈C with u �= λ it is then true that Hn(a, b; u;λ) =

1–u
λ–u . For n > 0 we have (see [18, p. 10, Theorem 4.2])

λ
(
ln b + H(a, b; u;λ)

)n – uHn(a, b; u;λ) = (ln a)n.
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As an example, the generalized Apostol-type Frobenius–Euler numbers and polynomi-
als are (with the help of MAPLE) as follows.

The generalized Apostol-type Frobenius–Euler numbers:

H0(a, b; u;λ) =
1 – u
λ – u

,

H1(a, b; u;λ) =
ln a – λ ln b

(λ – u)
,

H2(a, b; u;λ) =
(ln a)2 – λ(ln b)2

(λ – u)
– λ ln b

ln a – λ ln b
(λ – u)2 .

The generalized Apostol-type Frobenius–Euler polynomials:

H0(x; a, b, c; u;λ) =
1 – u
λ – u

,

H1(x; a, b, c; u;λ) = x
ln c(1 – u)

λ – u
+

ln a – λ ln b
(λ – u)

,

H2(x; a, b, c; u;λ)

= x2 (ln c)2(1 – u)
λ – u

– 2x ln c
ln a – λ ln b

(λ – u)
+

(ln a)2 – λ(ln b)2

(λ – u)
– 2λ ln b

ln a – λ ln b
(λ – u)2 .

These polynomials are commonly said to be of Euler type, and they have been studied by
various authors in different applications of practical importance (see [1, 12, 21]).

On the other hand, the Hurwitz–Lerch zeta function �(z, s, a) is defined as (see [15, p.
296, Eq. (4.1)])

�(z, s, a) =
∞∑

n=0

zn

(n + a)s , a ∈C \Z–
0 ; s ∈C when |z |< 1 (10)

and �e(s) > 1 for every |z |= 1.
For z = 1 in (10) we have the Hurwitz zeta functions

ζ (s, a) = �(1, s, a) =
∞∑

n=0

1
(n + a)s . (11)

Recently, there was defined a new family of Lerch-type zeta function, interpolating a cer-
tain class of higher-order Apostol-type numbers and Apostol-type polynomials (cf. [20]).
We will use (10) and (11) in Theorems 5.1 and 5.2.

3 Fourier expansion of generalized Apostol-type Frobenius–Euler polynomials
Hn(x, a, b, c; u;λ)

In this section, we get the Fourier expansions for the generalized Apostol-type Frobenius–
Euler polynomials.

Theorem 3.1 Let u,λ ∈ C\{0; 1}u �= λ and a, b, c ∈ R
+, 1 ≤ a ≤ 1.1, b > 1, 1 < c ≤ e, 0 < x <

0.9, we have

Hn(x, a, b, c; u;λ) = n!(ln b)n
(

u
λ

)x ln c
ln b

[u – ( u
λ

)
ln a
ln b

u

]∑

k∈Z

e
2πkxi ln c

ln b

[2πki – log ( λ
u )]n+1 . (12)
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Proof First we consider fn(z) = 1
zn+1

az–u
λbz–u cxz and the following integral:

∫

C
fn(z) dz, (13)

over the circle C = {z : |z| ≤ (2N + ε)π and ε ∈ R, (επ i ± log( λ
u ) �= 0 (mod 2π i))}.

The poles of the function fn(z) are given by

zk =
2πki – log( λ

u )
ln b

, k ∈ Z.

With z = 0 a pole of order n + 1. From the Cauchy residue theorem we have (see [7, p. 112,
Theorem 2.2])

∫

C
fn(z) dz = 2π i

{
Res

(
fn(z), z = 0

)
+

∑

k∈Z
Res

(
fn(z), z = zk

)}
. (14)

We calculate Res(fn(z), z = 0) and Res(fn(z), z = zk) as follows (see [7, p. 113, Proposi-
tion 2.4]):

Res
(
fn(z), z = 0

)
= lim

z−→0

1
n!

dn

dzn

[
(z – 0)n+1 1

zn+1

∞∑

m=0

Hm(x, a, b, c; u;λ)
zm

m!

]

= lim
z−→0

1
n!

∞∑

m=n
Hm(x, a, b, c; u;λ)

zm–n

(m – n)!

=
Hn(x, a, b, c; u;λ)

n!
.

Also

Res
(
fn(z), z = zk

)
= lim

z−→zk
(z – zk)(z)–(n+1) az – u

λbz – u
cxz

=
1

zn+1
k

(
azk – u

)
cxzk lim

z−→zk

z – zk

λbz – u

=
1

[ 2πkxi–log( λ
u )

ln b ]n+1

(
a

2πkxi–log( λ
u )

ln b – u
)
c

2πkxi+log( u
λ

)x

ln b
1

λb
2πkxi–log( λ

u )
ln b ln b

.

So, in (14) we have
∫

C
fn(z) dz = 2π i

{
Hn(x, a, b, c; u;λ)

n!

+
∑

k∈Z

(a
2πkxi–log( λ

u )
ln b – u)c

2πkxi+log( u
λ

)x

ln b

[ 2πkxi–log( λ
u )

ln b ]n+1

1

λb
2πkxi–log( λ

u )
ln b ln b

}
.

Taking N → ∞ it becomes
∫

C fn(z) dz = 0. So we have

Hn(x, a, b, c; u;λ) = –n!clog( u
λ

)x ∑

k∈Z

[a
2πki–log( λ

u )
ln b – u]c

2πkxi
ln b

[ 2πki–log( λ
u )

ln b ]n+1λb
2πki–log( λ

u )
ln b ln b

. (15)

In (15), as a, b, c, are expressed in terms of exponential, we complete the proof. �
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Corollary 3.1 Let u,λ ∈Cwith u �= 1,λ �= 1, u �= λ; 0 < x < 1 and a = 1, b = c = e, we have

Hn(x, 1, e, e; u;λ) = Hn(x; u;λ) =
(u – 1)

u
ux

λx n!
∑

k∈Z

e2π ikx

[2π ik – log( λ
u )]n+1

. (16)

This is the Fourier expansion for Apostol-type Frobenius–Euler polynomials (see [2, p. 5,
Theorem 1]).

Corollary 3.2 Let u,λ ∈Cwith u �= 1,λ = 1, u �= λ; 0 < x < 1 and a = 1, b = c = e, we have

Hn(x, 1, e, e; u; 1) = Hn(x, 1, u) = Hn(x, u) =
(u – 1)

u
uxn!

∑

k∈Z

e2π ikx

[2π ik + log(u)]n+1 . (17)

This is the Fourier expansion for Frobenius–Euler polynomials obtained in (see [2, p. 8,
Corollary 4]).

Corollary 3.3 Let u,λ ∈Cwith u �= 1, u �= λ; 0 < x < 1; a = 1, b = c = e; u = –1, we have

Hn(x, 1, e, e; –1;λ) = Hn(x,λ, –1) = En(x;λ) = 2n!
∑

k∈Z

e(2k–1)π ikx

[(2k – 1)π i – log(λ)]n+1 . (18)

This is the Fourier expansion for Apostol–Euler polynomials (see [14, p. 2196, Eq. (2.8)]).

4 Integral representation of the generalized Apostol-type Frobenius–Euler
polynomials

In this section, we will show the integral representation of generalized Apostol-type
Frobenius–Euler polynomials.

Theorem 4.1 For n ∈ N and 0 < x ≤ 0, 9, |ξ | < 1
2 , ξ ∈ R, a, b, c ∈ R

+, 1 ≤ a ≤ 1, 1b > 1 and
1 < c ≤ e,

Hn
(
x; a, b, c; u; –ue2π iξ ) = �

[∫ ∞

0

D(n; x, v)(e2π (v–ix ln c
ln b )e2ξπv + e–2ξπv)

cosh 2πv – cos 2πx ln c
ln b

vn dv
]

+ �

[∫ ∞

0

iB(n; x, v)(e2π (v–ix ln c
ln b )e2ξπv – e–2ξπv)

cosh 2πv – cos 2πx ln c
ln b

vn dv
]

, (19)

where

� =
1
2

(ln b)n
[

u – e–2π ixξ ln a
ln b (–1)

ln a
ln b

u

]
e–(2ξπ ix ln c

ln b ),

D(n; x, v) =
[

eπv cos

(
πx

ln c
ln b

–
(n + 1)π

2

)
+ e–πv cos

(
πx

ln c
ln b

+
(n + 1)π

2

)]
,

B(n; x, v) =
[

eπv sin

(
πx

ln c
ln b

–
(n + 1)π

2

)
– e–πv sin

(
πx

ln c
ln b

+
(n + 1)π

2

)]
.

Proof From (12) and taking λ = –ue2π iξ , k �−→ –k we have

Hn

(
x, a, b, c; u; –ue2π iξ )
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= (ln b)n
[

u – e–2π ixξ ln a
ln b (–1)

ln a
ln b

u

]
e–π ix ln c

ln b e–2π iξx ln c
ln b

n!
(–π i)n+1

×
∑

k∈Z

e–2π ikx ln c
ln b

[2k + 2ξ + 1]n+1 , (20)

using (5) and

(
–1
i

)n+1

= e
(n+1)π i

2 ; (–1)(n+1) = e–(n+1)π i,

we have

Hn

(
x, a, b, c; u; –ue2π iξ )

=
[

u – e–2π ixξ ln a
ln b (–1)

ln a
ln b

u

]
(ln b)n

(–π i)n+1

∞∑

k=0

e–(2k ln c
ln b +2ξ ln c

ln b + ln c
ln b )π ix

∫ ∞

0
tne–(2k+2ξ+1)t dt

+
[

u – e–2π ixξ ln a
ln b (–1)

ln a
ln b

u

]
(ln b)n

(–π i)n+1 (–1)n+1

×
∞∑

k=0

e(2k ln c
ln b –2ξ ln c

ln b – ln c
ln b )π ix

∫ ∞

0
tne–(2k–2ξ–1)t dt.

Thus,

Hn

(
x, a, b, c; u; –ue2π iξ )

=
[

u – e–2π ixξ ln a
ln b (–1)

ln a
ln b

u

]
(ln b)ne–2ξπ ix ln c

ln b

(–π i)n+1

∫ ∞

0

e–π ix ln c
ln b

e2t – e–2π ix ln c
ln b

e(1–2ξ )ttn dt

+
[

u – e–2π ixξ ln a
ln b (–1)

ln a
ln b

u

]
(ln b)ne–2ξπ ix ln c

ln b

(–π i)n+1 (–1)n+1
∫ ∞

0

e–π ix ln c
ln b

e2t – e2π ix ln c
ln b

e(3+2ξ )ttn dt,

then

Hn

(
x; a, b, c; u; –ue2π iξ )

=
�

(π )n+1

{∫ ∞

0
e

(n+1)π i
2 �(t; x, ; b, c)eπ ix ln c

ln b e–(2ξ–1)ttn dt

+
∫ ∞

0
e

–(n+1)π i
2

(e2π ix ln c
ln b – e–2t)

cosh(2t) – cos(2πx ln c
ln b )

e–3π ix ln c
ln b e(2ξ+3)ttn dt

}
,

where

�(t; x, ; b, c) =
(e–2π ix ln c

ln b – e–2t)
cosh(2t) – cos(2πx ln c

ln b )

and

� =
1
2

(ln b)n
[

u – e–2π ixξ ln a
ln b (–1)

ln a
ln b

u

]
e–(2ξπ ix ln c

ln b ).
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With in+1 = e
(n+1)π i

2 , (–1)n+1 = e–(n+1)π i, and making the substitution t = πv and simplifying,
we complete the result. �

Corollary 4.1 For n ∈ N and 0 ≤ x ≤ 1, |ξ | < 1
2 , ξ ∈ R, a = 1, b = c = e, we obtain the

integral representation for the Apostol-type Frobenius–Euler polynomials:

Hn
(
x; 1, e, e; u; –ue2π iξ ) =

u–1
u e–2ξπ ix

2

{∫ ∞

0

D(n; x, v)(e2π (v–ix)e2ξπu + e–2ξπv)
cosh 2πv – cos 2πx

vn dv
}

+
u–1

u e–2ξπ ix

2

{∫ ∞

0

iB(n; x, v)e2π (v–ix)e2ξπv – e–2ξπv)
cosh 2πv – cos 2πx

vn dv
}

,

where

D(n; x, v) =
[

eπv cos

(
πx –

(n + 1)π
2

)
– e–πv cos

(
πx +

(n + 1)π
2

)]
,

B(n; x, v) =
[

eπv sin

(
πx –

(n + 1)π
2

)
– e–πv sin

(
πx +

(n + 1)π
2

)]
.

Corollary 4.2 For n ∈N and 0 ≤ x ≤ 1, |ξ | < 1
2 , ξ ∈R, a = 1, b = c = e u = –1, we have

Hn
(
x; 1, e, e; –1; e2π iξ ) = e–2ξπ ix

{∫ ∞

0

D(n; x, v)(e2π (v–ix)e2ξπv + e–2ξπv)
cosh 2πv – cos 2πx

vn dv
}

+ e–2ξπ ix
{∫ ∞

0

iB(n; x, v)e2π (v–ix)e2ξπv – e–2ξπv)
cosh 2πv – cos 2πx

vn dv
}

,

where

D(n; x, v) =
[

eπv cos

(
πx –

(n + 1)π
2

)
– e–πv cos

(
πx +

(n + 1)π
2

)]
,

B(n; x, v) =
[

eπv sin

(
πx –

(n + 1)π
2

)
– e–πv sin

(
πx +

(n + 1)π
2

)]
.

The result obtained in Corollary 4.2 is a new integral representation for the Apostol–
Euler polynomials Hn(x; 1, e, e; –1; e2π iξ ) = En(x; e2π iξ ).

Next, we obtain the integral representation of Apostol-type Frobenius–Genocchi poly-
nomials.

Theorem 4.2 For n ∈ N, 0 ≤ x ≤ 1, |ξ | < 1/2, ξ ∈R, we have

G
F
n
(
x; u; –ue2π iξ )

=
[

u – 1
u

]
n
2

e–2ξπ ix
{∫ ∞

0

D1(n; x, v)(e2π (v–ix)e2ξπv + e–2ξπv)
cosh 2πv – cos 2πx

vn–1 dv
}

+
[

u – 1
u

]
n
2

e–2ξπ ix
{∫ ∞

0

iB1(n; x, v)e2π (v–ix)e2ξπv – e–2ξπv)
cosh 2πv – cos 2πx

vn–1 dv
}

,

where

D1(n; x, v) =
[

eπv cos

(
πx –

nπ

2

)
– e–πv cos

(
πx +

nπ

2

)]
,
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B1(n; x, v) =
[

eπv sin

(
πx –

nπ

2

)
– e–πv sin

(
πx +

nπ

2

)]
.

Proof Considering (8), λ = –ue2π iξ , k �−→ –k, then

Gn
F(

x; u; –ue2π iξ ) =
[

u – 1
u

]
e–π ixe–2π iξx n!

(–π i)n

∑

k∈Z

e–2π ikx

[2k + 2ξ + 1]n .

Using (5), and noting that –1
i = enπ i/2, (–1)n = e–nπ i, then we have

Gn
F(

x; u; –ue2π iξ ) =
[

u – 1
u

]
n

(–π i)n

{ ∞∑

k=0

e–(2k+2ξ+1)π ix
∫ ∞

0
tn–1e–(2k+2ξ+1)t dt

+ (–1)n
∞∑

k=0

e–(–2k+2ξ+1)π ix
∫ ∞

0
tn–1e–(2k–2ξ–1)t dt

}

=
[

u – 1
u

]
n

(–π i)n

{∫ ∞

0

e–(2ξ+1)π ix

e2t – e–2π ix e2te–(2ξ+1)ttn–1 dt

+ (–1)n
∫ ∞

0

e(2ξ+1)π ix

e2t – e2π ix e2te(1+2ξ )ttn–1 dt
}

=
1
2

[
u – 1

u

]
n
πn

{∫ ∞

0
e

nπ i
2

(e–2π ix – e–2t)
cosh 2t – cos 2πx

eπ ixe–(2ξ–1)ttn–1 dt

+
∫ ∞

0
e

–nπ i
2

(e2π ix – e–2t)
cosh 2t – cos 2πx

e–3π ixe(2ξ+3)ttn dt
}

.

Using ( 1
–i )

n = e nπ i
2 and (–1)n = e–nπ i, making the substitution t = πv and simplifying, we

complete the proof. �

Corollary 4.3 For n ∈N, 0 ≤ x ≤ 1, |ξ | < 1/2, ξ ∈R, and u = –1 we have

G
F
n
(
x; –1; e2π iξ ) = ne–2ξπ ix

{∫ ∞

0

D1(n; x, v)(e2π (v–ix)e2ξπv + e–2ξπv)
cosh 2πv – cos 2πx

vn–1 dv
}

+ ne–2ξπ ix
{∫ ∞

0

iB1(n; x, v)e2π (v–ix)e2ξπv – e–2ξπv)
cosh 2πv – cos 2πx

vn–1 dv
}

,

where

D1(n; x, v) =
[

eπv cos

(
πx –

nπ

2

)
– e–πv cos

(
πx +

nπ

2

)]
,

B1(n; x, v) =
[

eπv sin

(
πx –

nπ

2

)
– e–πv sin

(
πx +

nπ

2

)]
.

The result obtained in Corollary 4.3, is the integral representation for the Apostol–
Genocchi polynomials.

Theorem 4.3 For n ∈ N, 0 ≤ x ≤ 1, |ξ | < 1/2, ξ ∈R, we have

Hn
(
x; e2π iξ ) =

[
1 – e–2ξπ i]e2ξπ ix

2

{∫ ∞

0

D2(n; x, v)(eπ ixe2ξπv + e–π ixe–2ξπv)
cosh 2πv – cos 2πx

vn dv
}
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+
[
1 – e–2ξπ i]e–2ξπ ix

2

{∫ ∞

0

iB2(n; x, v)(eπ ixe2ξπv – e–π ixe–2ξπv)
cosh 2πv – cos 2πx

vn dv
}

,

where

D2(n; x, v) =
[

eπv cos

(
πx –

(n + 1)π
2

)
– e–πv cos

(
πx +

(n + 1)π
2

)]
,

B2(n; x, v) =
[

eπv sin

(
πx –

(n + 1)π
2

)
+ e–πv sin

(
πx +

(n + 1)π
2

)]
.

Proof Returning to (17), setting u = e2π iξ , k �−→ –k and using the well-known integral
formula (5), we complete the proof. �

Theorem 4.4 For n ∈ N, 0 ≤ x ≤ 1, |ξ | < 1/2, ξ ∈R, we have

G
F
n
(
x; e2π iξ )

=
[
1 – e–2ξπ i]ne2ξπ ix

2

{∫ ∞

0

D3(n; x, v)(eπ ixe2ξπv + e–π ixe–2ξπv)
cosh 2πv – cos 2πx

vn–1 dv
}

+
[
1 – e–2ξπ i]ne–2ξπ ix

2

{∫ ∞

0

iB3(n; x, v)(eπ ixe2ξπv – e–π ixe–2ξπv)
cosh 2πv – cos 2πx

vn–1 dv
}

,

where

D3(n; x, v) =
[

eπv cos

(
πx –

nπ

2

)
– e–πv cos

(
πx +

nπ

2

)]
,

B3(n; x, v) =
[

eπv sin

(
πx –

nπ

2

)
+ e–πv sin

(
πx +

nπ

2

)]
.

Proof Returning to (4) and setting u = e2π iξ , k �−→ –k and using the well-known integral
formula (5), we complete the proof. �

5 Explicit formulas for the generalized Apostol–type Frobenius–Euler
polynomials at rational arguments

In this section, we show the formula in rational arguments of generalized Apostol-type
Frobenius–Euler polynomials, Apostol Frobenius–Euler polynomials, Apostol Frobenius–
Genocchi polynomials, Frobenius–Genocchi polynomials, Frobenius–Euler polynomials.

Theorem 5.1 For n, q ∈ N, p ∈ Z, u ∈ C, with �eu �= 1, ξ ∈ R, |ξ | < 1, 1 ≤ a ≤ 1.1, b >
1 and 1 < c ≤ e, we have the formula for the generalized Apostol-type Frobenius–Euler
polynomials at rational arguments given by

Hn

(
p
q

; a, b, c; u; –ue2π iξ
)

= An(a, b; u)
n!

(2qπ )n+1

{ q∑

j=1

ζ

(
n + 1,

2j + 2ξ – 1
2q

)
e( (n+1)

2 –
(2j+2ξ+1)p ln c

ln b
q )π i

+
q∑

j=1

ζ

(
n + 1,

2j – 2ξ – 3
2q

)
e( –(n+1)

2 –
(2j–2ξ–3)p ln c

ln b
q )π i

}
,
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where

An(a, b; u) = (ln b)n
[

u – eiπ ln a
ln b

u

]
.

Proof From Eq. (12) and

in+1 = e
(n+1)π i

2

we get

Hn(x; a, b, c; u;λ)

= n!(ln b)n
(

u
λ

)x ln c
ln b

[u – ( u
λ

)
ln a
ln b

u

]
in+1

[ ∞∑

k=0

e(( n+1
2 )π–2πkx ln c

ln b )i

[2π ik + log( λ
u )]n+1

]

+ n!(ln b)n
(

u
λ

)x ln c
ln b

[u – ( u
λ

)
ln a
ln b

u

]
in+1

[ ∞∑

k=0

e(–( n+1
2 )π+2πkx ln c

ln b )i

[2π ik – log( λ
u )]n+1

]
. (21)

The result shown below is equivalent to (21):

Hn(x; a, b, c; u;λ)

= n!(ln b)n
(

u
λ

)x ln c
ln b

[u – ( u
λ

)
ln a
ln b

u

]
in+1

[ ∞∑

k=1

e(( n+1
2 )π–(2k–2) ln c

ln b πx)i

[2π ik – 2π i + log( λ
u )]n+1

]

+ n!(ln b)n
(

u
λ

)x ln c
ln b

[u – ( u
λ

)
ln a
ln b

u

]
in+1

[ ∞∑

k=1

e((– n+1
2 )π+(2k–2) ln c

ln b πx)i

[2π ik – 2π i – log( λ
u )]n+1

]
. (22)

Thus, according to Eq. (10) and by the elementary identity

∞∑

k=1

f (k) =
l∑

j=1

∞∑

k=0

f (lk + j), l ∈N, (23)

(see [14, p. 2202, Eq. 4.12]) we find the formula

Hn(x; a, b, c; u;λ)

= (ln b)n
(

u
λ

)x ln c
ln b

[u – ( u
λ

)
ln a
ln b

u

]

× n!
(2π il)n+1 in+1

{ l∑

j=1

�

(
e–2lπx ln c

ln b i, n + 1,
2π ji + log( λ

u )
2π il

)
τ

+
l∑

j=1

�

(
e2lπx ln c

ln b i, n + 1,
2π ji – log( λ

u )
2π il

)
e( –(n+1)π

2 –2πx ln c
ln b +2jπx ln c

ln b )i

}
, (24)

where τ = e( (n+1)π
2 +2πx ln c

ln b –2jπx ln c
ln b )i. Setting λ = –ue2π iξ , x = p

q , l = q in (24), the proof of The-
orem 5.1 is completed. �
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Corollary 5.1 For n, q ∈ N, p ∈ Z, u ∈ C, with �eu �= 1, ξ ∈ R, |ξ | < 1, and a = 1, b = c =
e we have the following formula at rational arguments for the Apostol Frobenius–Euler
polynomials:

Hn

(
p
q

; 1, e, e; u; –ue2π iξ
)

=
[

u – 1
u

]
n!

(2qπ )n+1

{ q∑

j=1

ζ

(
n + 1,

2j + 2ξ – 1
2q

)
e( (n+1)

2 – (2j+2ξ+1)p
q )π i

+
q∑

j=1

ζ

(
n + 1,

2j – 2ξ – 3
2q

)
e( –(n+1)

2 – (2j–2ξ–3)p
q )π i

}
.

Theorem 5.2 For n, q ∈N, p ∈ Z, u ∈C, with �eu �= 1, ξ ∈R, |ξ | < 1, we have the following
formula at rational arguments for the Apostol Frobenius–Genocchi polynomials:

Gn
F
(

p
q

; u, ; –ue2π iξ
)

=
[

u – 1
u

]
n!

(2qπ )n

{ q∑

j=1

ζ

(
n,

2j – 2ξ – 3
2q

)
e( (2j–2ξ–2)p

q – n
2 )π i

+
q∑

j=1

ζ

(
n,

–2j + 2ξ – 1
2q

)
e(– (2j+2ξ )p

q + n
2 )π i

}
.

Theorem 5.3 For n, q ∈ N, p ∈ Z, ξ ∈ Z, u ∈ C, |ξ | < 1, we have the following formula at
rational arguments for the Frobenius–Euler polynomials:

Hn

(
p
q

; e2π iξ
)

=
[
1 – e2π iξ ] n!

(2qπ )n+1

{ q∑

j=1

ζ

(
n + 1,

j + ξ – 1
q

)
e( (2j+2ξ–1)p

q – (n+1)
2 )π i

+
q∑

j=1

ζ

(
n + 1,

j – ξ – 1
2q

)
e(– (2j–2ξ–1)p

q + (n+1)
2 )π i

}
.

Theorem 5.4 For n, q ∈N, p ∈ Z, u ∈C, with �eu �= 1, ξ ∈R, |ξ | < 1„ the following formula
at rational arguments of Frobenius–Genocchi polynomials:

Gn
F
(

p
q

; e2π iξ
)

=
[
1 – e2π iξ ] n!

(2qπ )n

{ q∑

j=1

ζ

(
n,

j + ξ – 1
q

)
e( (2j+2ξ–1)p

q – n
2 )π i

+
q∑

j=1

ζ

(
n,

j – ξ – 1
2q

)
e(– (2j–2ξ–1)p

q + n
2 )π i

}
.

For the proof of Theorems 5.2, 5.3 and 5.4 we use (8), (2) and (10), (4) and the identity (23).

6 Conclusions
In this article, we showed the Fourier series representation of generalized Apostol-type
Frobenius–Euler polynomials by using the proof of the Cauchy residue theorem. The re-
sult presented generalizes several Fourier series representations for polynomial families
known to date. Also, we proved an integral representation for this and other known poly-
nomial families. Finally, we presented the explicit formula in rational arguments in terms
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of the Zeta Hurwit Lerch and Zeta Hurwit functions for the generalized Apostol-type
Frobenius Euler polynomials also said to be of Euler type.
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