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Condensation driven by a quantum phase transition
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Abstract
The grand canonical thermodynamics of a bosonic system is studied in order to identify the footprint of its own high-density

quantum phase transition. The phases displayed by the system at zero temperature establish recognizable patterns at finite
temperature that emerged in the proximity of the boundary of the equilibrium diagram. The gaped phase induces a state
of collectivism/condensation at finite temperature in which population cumulates into the ground state in spite of inter-
acting attractively. The work sets the foundation to approach the effect of attraction in the formation of a molecular condensate.
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I. INTRODUCTION

The understanding of collectivism is a crucial task in
the search for practical applications where a number of
phases taking place in the low-energy range could be
utilized in mass-produced technology. The process by
which a large number of particles, in particular bosons,
collectively occupy the same single-body state gives rise
to coherent phases where the features of a single state
magnify and therefore manifest at the macroscopic level.
The archetype of collectivism is Bose-Einstein condensa-
tion [1], a mechanism that constitutes the interpretative
ground of other phenomena like superfluidity or super-
conductivity. In essence, condensation is driven by sta-
tistical effects at the single-body level, but interaction
cannot be completely suppressed in any practical sce-
nario. The role of attractive interaction, in particular,
has proved detrimental in a number of studies [2–12],
but experimental evidence of condensation in attractive
systems has been reported [13]. In this context there
must be a range over which collectivism can be sustained
under the effect of interaction, especially when the in-
teraction role can be captured using single-body terms.
The relevance of this phenomenon is notorious in times
when the first prototypes of quantum computation have
demonstrated quantum supremacy [14, 15] and control
mechanisms are increasingly necessary to extent the cur-
rent capabilities. This has boosted the interest in the
realization of novel collective phases such as the molecu-
lar condensate [16, 17], which in turn evidences the need
of a better understanding of the process of condensation
under attractive fields since it may prove a precursor of
molecular formation.
Let us consider a system of one-species bosons that can
tunnel between two equal-energy wells [18]. Bosons can
interact among them only when they occupy the same
well. This interaction is attractive, so it tends to pack
bosons together. The system is modeled via the next
quantized Hamiltonian

ĤM = δ(â†1 â2 + â
†
2â1)− iγ(â†1â2 − â

†
2â1)−

λ

M
(m̂2

1 + m̂2
2). (1)
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Ladder operators obey standard bosonic commutation

rules, [â1, â
†
1] = [â2, â

†
2] = 1, [â1, â2] = 0. The number

operators

m̂1 = â†1â1, m̂2 = â†2â2, (2)

determine the particle occupation at each well. Integer
M is the total number of particles in the system, so that
M = m̂1 + m̂2. Constants γ and λ modulate the in-
tensity of hopping and interaction respectively. Both
are considered strictly positive in this work. Constant
δ modulates the intensity of a hopping process in which
the phase of one well with respect to the other is un-
changed. Henceforth the energy-scale is chosen so that
δ = 1. By definition Ĥ0 = 0. Hamiltonian (1) has the
essential elements of a Bose-Hubbard model, which has
been studied from the perspective of the grand-canonical
formalism as a descriptor of the transition between Mott
insulator and superfluid [19] and also verified experimen-
tally with ultracold atoms [20, 21]. The main difference
with the current study is that here the interaction is at-
tractive and has been scaled with respect to the number
of particles. The latter feature can also be seen in related
models such as the Lipkin-Meshkov-Glick model and the
infinite-range Ising model, from which Hamiltonian (1)
can be obtained as a second quantization [22].
Assuming that to first order the ground state adopts a
collective form, it can be written as

|G(θ, ϕ)〉 = b̂†1
M |0, 0〉√
M !

, b̂†1 = â†1 cos θ − â†2e
iϕ sin θ, (3)

so that [b̂1, b̂
†
1] = 1. The angle domains are 0 ≤ θ ≤

π/2 and 0 ≤ ϕ < 2π, ensuring that different angle pairs
correspond to genuinely different modes. In order to find
the correct angles, the energy function

E(θ, ϕ) = 〈G(θ, ϕ)|ĤMG(θ, ϕ)〉, (4)

is minimized over θ and ϕ. From the procedure shown
in appendix A it follows that the system undergoes two
distinct phases determined by the value of λ relative to

the critical value λc =
√

1 + γ2. In the region λ ≤ λc

the energy displays a single minimum at

θ⋆ =
π

4
, cosϕ⋆ =

1

λc

, sinϕ⋆ =
γ

λc

. (5)
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The corresponding ground state energy is

E⋆
λ≤λc

= −M

(

λc +
λ

2

)

. (6)

From quantum theory it is known that because in this
phase the ground state is non-degenerate it must display
the Hamiltonian’s symmetries. Hamiltonian (1) com-
mutes with the antiunitary operator composed by the
swapping of subscripts 1 ↔ 2 followed by complex con-
jugation. As a consequence, the number of particles on
each well must be the same.
In the region λ ≥ λc the energy displays two equal min-
ima located at (θ⋆1 , ϕ

⋆) and (θ⋆2 , ϕ
⋆). Here ϕ⋆ is the same

than in equation (5). In addition

θ⋆1 =
1

2
arcsin

λc

λ
, θ⋆2 =

π

2
− θ⋆1 . (7)

Notice that by making θ different from π/4 the balance of
occupation between the wells is broken and the proposed
solutions do not independently display the Hamiltonian’s
inversion symmetry. The corresponding ground state en-
ergy is

E⋆
λ≥λc

= −M

(

λ+
λ2
c

2λ

)

. (8)

The phase change is rooted in a change in the Hamil-
tonian spectrum, which goes from non-degenerate for
λ < λc to two-fold degenerate for λ ≥ λc. In the lat-
ter case the equilibrium configuration corresponds to a
maximally mixed state in the space spanned by two lin-
early independent ground states. However, it is often
argued that small perturbations tip the scale to either of
the constituent pure-states, such that the phase change
is equivalent to a continuous break of symmetry of a pure
ground-state as a function of the Hamiltonian’s param-
eters. This process is known as a quantum phase tran-
sition and takes place at zero temperature since it is in
this instance that the equilibrium state coincides with

the ground state. Here it is intended to show that un-
der specific conditions this quantum phase transition can
manifest at finite temperature, although not as a symme-
try breaking of a quantum state in pure form but as a
change in the collective behavior of a grand canonical
ensemble of particles.

II. THERMODYNAMIC STATE OF THE OPEN

SYSTEM

When the system is embedded in a bath of inverse tem-
perature β and chemical potential µ it eventually reaches
thermodynamic equilibrium. This equilibrium state is
represented by a mixed state whose most important char-
acterization is given by the grand canonical partition
function

Ξ =

∞
∑

M=0

Tr
(

e−β(ĤM−µM)
)

. (9)

Ξ ξ [(λD − λ)κ(λ) + µD − µ]−α

λc

√

1 + γ2

λD

−2(λc + µD) if µD ≥ − 3
2
λc,

1
2

(

−µD +
√

µ2
D − 2λ2

c

)

if µD ≤ − 3
2
λc.

κ(λ)
1
2

if λD ≤ λc,

1− λ2
c

2λλD
if λD ≥ λc.

α
1 if (λD, µD) 6= (λc,− 3

2
λc),

5
4

if (λD, µD) = (λc,− 3
2
λc).

ξ
A function of λ, µ and β that tends to
a finite value when (λ, µ) → (λ−

D, µ−
D).

TABLE I: Grand partition function of Hamiltonian (1). No-
tice that λ < λD and µ < µD.

The presence of non-quadratic terms in the Hamiltonian
hinders the exact analytical calculation of Ξ. Hence, the
following quadratic form is proposed

Ξ ≈ 1 +
1√
π

∞
∑

M=1

e
βλM

2

∫ ∞

−∞
dxe−x2

Tr
(

e−β(â†
1â2+â

†
2â1)+iβγ(â†

1â2−â
†
2â1)+x

√
2βλ
M

(m̂1−m̂2)+βµM
)

. (10)

The original grand partition function can be obtained
from this expression by carrying out the integral treat-
ing operators as scalars. This alternative expression is
expected to be accurate over parameter zones where the
system displays high occupation, since in this case fluc-
tuations become negligible compared to mean values. As
can be seen from appendix B, in the process of calcu-
lating (10) it is found that Ξ converges inside the pa-
rameter zones highlighted in figure 1. The grand parti-

tion function tends to diverge as any point of the curve
(λD, µD), whose explicit expression is given in table I, is
approached from the left. Near this divergence, Ξ dis-
plays the functionality reported also in table I. The line
λ = λc partitions the parameter space into cases whose
properties are being discussed further ahead in this note.
However, there is no symmetry breaking. In both cases
the number of particles at both wells is the same. This
is to be expected from the fact that the thermodynamic
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µD / λc = -1.77
µD / λc = -1.50
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λD / λc = 1.13
λD / λc = 1.00
λD / λc = 0.80

FIG. 1: Left. Colored regions represent the parameter zones where the grand partition function converged (equilibrium zones).
Right. Relative mean number of particles in the mode perpendicular to the mode with maximum occupation, as defined by
equation (20). Perpendicular occupation falls when approaching the divergence from inside the case-1 region or through the
boundary separating the cases, showing that to first order the particles tend to gather all in the mode with maximum occupation.
This mode coincides with the ground state mode in the range λ < λc. The case is different when approaching the divergence
from the case-2 region, where the perpendicular occupation tends to a finite number. The values γ = 1 and β = 1 were taken
to produce the graphs at the right panel.

Observable Formal expression Leading term close to (λD, µD) Behavior near (λD, µD) (×M )

M = 〈m̂1 + m̂2〉 1
β

∂ log Ξ
∂µ

α
β
[κ(λD)(λD − λ) + µD − µ]−1 1

E = 〈Ĥ〉 µM − ∂ log Ξ
∂β

µDM
−λc − λD

2
if λD ≤ λc,

−λD − λ2
c

2λD
if λD ≥ λc.

I = 〈 m̂
2
1+m̂2

2
M

〉 1
β

∂ log Ξ
∂λ

κ(λD)M

1
2

if λD ≤ λc,

1− λ2
c

2λ2
D

if λD ≥ λc.

J = −i〈â†
1â2 − â

†
2â1〉 − 1

β

∂ log Ξ
∂γ

γκ(λD)
λc

∂λD

∂λc
M

− γ
λc

if λD ≤ λc,

− γ

λD
if λD ≥ λc.

W = 〈â†
1â2 + â

†
2â1〉 E − γJ + λI

[

µD + κ(λD)
(

λD − γ2

λc

∂λD

∂λc

)]

M
− 1

λc
if λD ≤ λc,

− 1
λD

if λD ≥ λc.

TABLE II: Mean values according to the grand canonical formalism. Unreferenced variables are identified in table I.

state is a function of the Hamiltonian an as such it must
display its symmetries. A number of observables can be
obtained as derivatives of the grand partition function.
These can be seen in table II. They all show the same
scaling behavior near divergence, namely, proportional
to the total number of particles. However, multiplicative
coefficients display different functionality depending on
the region of parameter space from which the divergence
is approached. The relation between any pair of observ-
ables is continuous, but the relation between an observ-
able and the divergence point presents a discontinuity at
(λD, µD) = (λc,− 3

2λc). Thus, at finite temperature the
parameter space is divided into two cases that can be
recognized according to their divergence coefficients.

III. POPULATION DISTRIBUTION

Knowing that observables diverge when the system’s pa-
rameters approach an established boundary in parame-
ter space, it is of interest to uncover some of the features
that characterize the thermodynamic state near this di-
vergence zone. One way of addressing this issue is to
find how much a given mode contributes to the thermo-
dynamic state. Although bosons can access two inde-
pendent modes, one for each well in Hamiltonian (1), it
is possible to build other (linearly dependent) modes as
superpositions of the original ones. In this scenario it
becomes relevant to find the mean occupation of a given
mode. For this purpose let us define the following weight
function

N(θ, ϕ) = 〈b̂†b̂〉, b̂† = â†1 cos θ − â†2e
iϕ sin θ. (11)
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The average is calculated over the thermodynamic state
associated with the grand partition function previously
introduced in this document. Any mode available in
physical space can be reached in the range 0 ≤ θ ≤ π/2
and 0 ≤ ϕ < 2π. From a direct calculation it can be
shown that this weight function can also be written as

N =
M

2
− sin 2θ

2
(W cosϕ+ J sinϕ). (12)

In the process of arriving at this expression the property
〈m̂1 − m̂2〉 = 0 was used. This property follows from the
fact that the equilibrium state must display the Hamilto-
nian’s inversion symmetry. An explicit form of N can be
obtained by replacing the mean values of table II in (12).
A pair of angles (θN, ϕN) defining a mode with maximum
contribution must fulfill

∂θN |θNϕN = − cos 2θN
(

W cosϕN + J sinϕN
)

= 0 (13)

∂ϕN |
θNϕN =

sin 2θN

2

(

W sinϕN − J cosϕN
)

= 0 (14)

∂2
θ2N

∣

∣

θNϕN
= 2 sin 2θN

(

W cosϕN + J sinϕN
)

< 0. (15)

4 ∂2
ϕ2N

∣

∣

θNϕN
= ∂2

θ2N
∣

∣

θNϕN
< 0. (16)

As can be seen, condition (15) implies (16), so it is really
three conditions that must be accounted for. Equation
(13) is met for θN = π/4, giving a state with equal oc-
cupation at both sides, in compliance with the Hamilto-
nian’s symmetry. According to table II both W and J
are negative in the zone near divergence, hence conditions
(14) and (15) are satisfied for

cosϕN =
1√

1 + t2
, sinϕN =

t√
1 + t2

, t =
J

W
= γ. (17)

Interestingly, these parameters also define the ground
state in the gaped phase (λ < λc) of the quantum phase
transition discussed in the first part of this work, but
in this case this state with maximum occupation applies
to the whole spectrum of parameters near divergence,
including the gapless phase. The maximum occupation
number is given by

NN = N(θN, ϕN) =
M

2
+

1

2

√

W 2 + J2. (18)

Inserting the values reported in table II it results

n =
NN

M
=

{

1 if λD ≤ λc,
1
2

(

1 + λc

λD

)

if λD ≥ λc.
(19)

As below λc the number of particles in the most popu-
lated mode coincides with the mean number of particles
in the whole system, it is argued that in this regime par-
ticles go all into the maximally occupied mode, which is
at the same time the ground state of the high-density
Hamiltonian. The quantity

n⊥ = 1− n, (20)

is also the relative mean number of particles in the mode

perpendicular to b̂†, d̂† = â†1 cos θ+ â†2e
iϕ sin θ, evaluated

at (θN, ϕN). It then follows that for the case-1 family of
parameters of figure 1 the number of particles in the max-
imally occupied state approaches the mean number of
particles in the system at the same time that the number
of particles in the respective perpendicular state becomes
negligible. Instead, in the case-2 region the population is
distributed over two modes. Take into account that this
derivation is valid near the curve of divergence and not
necessarily over the whole space of parameters.
A numerical study is undertaken in order to benchmark
these analytical results. Hamiltonian (1) is diagonalized
for various system sizes M and the respective eigenval-
ues EM

j are used to find the grand canonical partition
function thus

Ξ = 1 +

Max
∑

M=1

eβµM
M+1
∑

j=1

e−βEM
j . (21)

The maximum size Max is adjusted depending on the
system’s parameters to achieve an absolute accuracy of
10−7. Eigenvalues can be in addition employed to cal-
culate the mean number of particles M using a similar
expression. Eigenvectors are also calculated and used to
find J and W as weighed sums (not as numerical deriva-
tives) in similarity to (21). These values are then used
to find n⊥. The results are shown in the right panel
of figure 1. The numerical values of n⊥ show a ten-
dency that is consistent with the analytical study, dis-
playing a monotonously decaying pattern as the diver-
gence is approached by either λ or µ from the case-1 re-
gion. The same tendency is observed when the divergence
is approached through the line that divides the param-
eter space. The decaying is stronger when approaching
(λD, µD) = (λc,− 3

2λc) (black and red curves), scaling

as ≈ x0.02 close to the origin. In other cases the decay-
ing coefficient is smaller and seems to be dependent on
the divergence point. Furthermore, n⊥ grows when ap-
proaching λD or µD at close range from the case-2 region,
suggesting a macroscopic fraction of particles settle in the
perpendicular mode. These features show that the prop-
erties of the high-density ground state dominate the col-
lective response in thermodynamic equilibrium [23]. The
gaped phase transmutes into a collective state in which
bosons cluster together in a single mode. This behavior
seems to be independent of temperature, rather being
determined by the proximity of interaction and chemi-
cal potential to the divergence region. Nevertheless, it
is likely that temperature would define how fast collec-
tivism arises as the divergence is approached. The fact
that compresibility, which can be found as ∂µM , goes to
infinity in general as (λ, µ) → (λD, µD) is indicative of
a highly conductive state not necessarily correlated with
collectivism.
A condensate is traditionally understood as the macro-
scopic occupation of a single-body state that in normal
conditions displays only marginal occupation, like any
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other state in the spectrum. Here the situation is seen
from the perspective that two occupation states are ini-
tially macroscopically occupied and then one of them is
depleted under the right conditions. The end result is the
same if the depleted state is seen as the set of marginally
occupied states in the condensate.

IV. CONCLUSIONS

The equilibrium response of a bosonic system display-
ing a quantum phase transition has been studied using
the grand canonical formalism. The phases characteriz-
ing the zero-temperature state drive characteristic fea-
tures in the finite temperature regime near the parame-
ter zone where the partition function diverged. A form
of quantum collectivism in which occupation is concen-
trated in the ground-state mode has been identified. Too
much attraction tends to dissolve this state, but there
exist a critical value of the interaction constant below
which collectivism can prevail in the presence of attrac-
tive interaction. This is related to the effect that the
negative chemical potential considered here has on bal-
ancing the instability caused by the attractive interac-
tion and the fact that the interaction constant has been
rescaled with respect to the system size. Moreover, ac-
cording to the phase diagram in figure 1 there cannot be
a condensed phase for positive values of the chemical po-
tential. Perhaps the most critical aspect of the present
study is therefore the consideration of negative chemi-
cal potential, which might pose technical challenges in
a controlled scenario [24], but could take place sponta-
neously in a less-artificial one, as for example a bosonic
superfluid. It remains to be seen whether other forms
of collectivism can be induced by deliberately breaking
the system’s inversion symmetry, for instance, by setting
different chemical-potential variables at each well. Also
of interest is to scale up the model by considering a large
number of modes in one dimension and see whether the
collectivism observed in the small system can be a pre-
cursor of condensation in an infinite chain. Ultimately,
by adding bosonic modes describing molecules it should
be possible to study the interplay between attractiveness
and molecular formation.
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Appendix A: Quantum Phase Transition

Making δ = 1 Hamiltonian (1) becomes

ĤM = â†1â2 + â†2â1 − iγ(â†1â2 − â†2â1)

− λ

M

(

â†1â1â
†
1â1 + â†2â2â

†
2â2

)

. (A1)

It is assumed that the ground state can be written as

|G(θ, ϕ)〉 = b̂†1
M |0, 0〉√
M !

= |M, 0〉, (A2)

b̂†1 = â†1 cos θ − â†2e
iϕ sin θ, (A3)

so that [b̂1, b̂
†
1] = 1. The angle domains are 0 ≤ θ ≤ π

2
and 0 ≤ ϕ < 2π, in such a way that different angle pairs
correspond to different modes. The basis change is given
by

[

b̂†1
b̂†2

]

=

[

cos θ −eiϕ sin θ
e−iϕ sin θ cos θ

] [

â†1
â†2

]

(A4)

⇒
[

â†1
â†2

]

=

[

cos θ eiϕ sin θ
−e−iϕ sin θ cos θ

] [

b̂†1
b̂†2

]

. (A5)

From direct calculations the following results are ob-
tained

〈G|â†1â2|G〉 = −Meiϕ cos θ sin θ, (A6)

〈G|â†1â1â†1â1|G〉 = M2 cos4 θ +M cos2 θ sin2 θ, (A7)

〈G|â†2â2â†2â2|G〉 = M2 sin4 θ +M cos2 θ sin2 θ. (A8)

Using these values the energy becomes to leading order
in M

EG(θ, ϕ) = 〈G(θ, ϕ)|ĤMG(θ, ϕ)〉 =

−M

(

sin 2θ(cosϕ+ γ sinϕ) + λ

(

1− sin2 2θ

2

))

. (A9)

The ground state energy corresponds to the minimum of
this expression with respect to θ and ϕ. Defining

q(θ, ϕ) = sin 2θ(cosϕ+ γ sinϕ)− λ sin2 2θ

2
, (A10)

extreme points must satisfy

∂θq|θ⋆ϕ⋆ = cos 2θ⋆(cosϕ⋆ + γ sinϕ⋆ − λ sin 2θ⋆) = 0, (A11)

∂ϕq|θ⋆ϕ⋆ = − sin 2θ⋆(sinϕ⋆ − γ cosϕ⋆) = 0, (A12)

∂
2
θ2q

∣

∣

θ⋆ϕ⋆ = −2 sin 2θ⋆(cosϕ⋆ + γ sinϕ⋆ − λ sin 2θ⋆)

−λ cos2 2θ⋆ < 0, (A13)

∂
2
ϕ2q

∣

∣

θ⋆ϕ⋆ = sin 2θ⋆(− cosϕ⋆ − γ sinϕ
⋆) < 0. (A14)

Conditions (A11), (A12) and (A14) are all met for the
next values

θ⋆ =
π

4
, cosϕ⋆ =

1
√

1 + γ2
, sinϕ⋆ =

γ
√

1 + γ2
. (A15)

Condition (A13) is met for these same values in the range

λ <
√

1 + γ2, which defines the scope of this particular
physical phase. Replacing these extreme points in (A9)
the ground state energy in this phase is found to be

EG = −M

(

√

1 + γ2 +
λ

2

)

. (A16)

Correspondingly, over the range λ >
√

1 + γ2 the follow-
ing values constitute solutions

θ⋆1 =
1

2
arcsin

√

1 + γ2

λ
, θ⋆2 =

π

2
− θ⋆1 , (A17)

cosϕ⋆ =
1

√

1 + γ2
, sinϕ⋆ =

γ
√

1 + γ2
. (A18)

The solutions are given by the pairs {θ⋆1 , ϕ⋆} and
{θ⋆2 , ϕ⋆}. Either pair delivers the following ground state
energy

EG = −M

(

λ+
1 + γ2

2λ

)

. (A19)

The expression

λc =
√

1 + γ2 (A20)

is the transition’s critical point. Since these results corre-
spond to first order in M , the quantum phase transition
takes place in the high density limit, i.e., M → ∞.

Appendix B: Calculation of Ξ

Taking equation (10) and making the variable change
x = y

√
Mβ leads to the next expression

Ξ ≈ 1 +

√

β

π

∞
∑

M=1

√
Me

βλM
2

∫ ∞

−∞

dye
−βMy2

Tr(eβĥM ), (B1)

so that

ĥM = −(â†1â2 + â†2â1) + iγ(â†1â2 − â†2â1)

+
√
2λy(m̂1 − m̂2) + µ(m̂1 + m̂2). (B2)

This effective Hamiltonian can also be written as

ĥM = (â†1 â†2)

(

µ+
√
2λy −1 + iγ

−1− iγ µ−
√
2λy

)(

â1
â2

)

. (B3)

Normal eigenenergies of ĥM are then found to be

ǫ±(y) = µ±
√

2λy2 + 1 + γ2 = µ±
√

2λy2 + λ2
c . (B4)
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Using these values the trace can be calculated as follows

Tr(eβĥM ) = Tr(eβ(ǫ+b̂
†
+b̂++ǫ−b̂

†
−b̂−))

=

M
∑

n=0

eβǫ+n+βǫ−(M−n) =
eβMǫ− − eβ(ǫ+−ǫ−)eβMǫ+

1− eβ(ǫ+−ǫ−)
.

(B5)

Operators b̂+ and b̂− correspond to diagonal bosonic
modes. Now let us take a term from (B1) and refor-
mulated in the next way

√
Me

βλM
2 =

√
βM√
π

∫ ∞

−∞
dxe−βMx2+βM

√
2λx. (B6)

Replacing (B5) and (B6) in (B1) and organizing terms
yields

Ξ = 1 +
β

π

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∑∞
M=1 MeβM(−x2−y2+

√
2λx+ǫ+(y))

1 − e−β(ǫ+(y)−ǫ−(y))

+

∑∞
M=1 Me

βM(−x2−y2+
√

2λx+ǫ−(y))

1 − e
β(ǫ+(y)−ǫ−(y))

. (B7)

Defining

F (x, y) = −x2 − y2 +
√
2λx+

√

2λy2 + λ2
c + µ, (B8)

it can be seen that both sums in (B7) shall converge if
F (x, y) < 0 for any real value of x and y. For this it is
necessary that

F (x⋆, y⋆) = F ⋆ < 0, (B9)

where x⋆ and y⋆ demark the location of the function’s
global maximum. Through a calculus analysis it can be
shown that two main cases arise

1. case 1: 0 ≤ λ < min(−2(µ+ λc), λc).

The function’s only maximum is located at (x⋆ =
√

λ/2, y⋆ = 0). The system’s parameters are compati-
ble with the condition

F ⋆ =
λ

2
+ λc + µ = − (λD − λ)

2
− (µD − µ) < 0, (B10)

being λD and µD a pair of constants satisfying λD =
−2(λc + µD). Equation (B10) highlights the fact that

lim
λ→λ

−
D
,µ→µ

−
D

F ⋆ = 0. (B11)

2. case 2: µ

λc
< − 3

2
and λc ≤ λ < 1

2

(

−µ+
√

µ2 − 2λ2
c

)

.

The function displays two maxima located at
(

x⋆ =

√

λ

2
, y⋆ =

√

λ2 − λ2
c

2λ

)

, (B12)

and

(

x⋆ =

√

λ

2
, y⋆ = −

√

λ2 − λ2
c

2λ

)

. (B13)

The system’s parameters are compatible with the condi-
tion

F ⋆ = λ+
λ2
c

2λ
+ µ

= −(λD − λ)

(

1− λ2
c

2λλD

)

− (µD − µ) < 0, (B14)

such that λD = 1
2

(

−µD +
√

µ2
D − 2λ2

c

)

. As in the pre-

vious case, equation (B11) is satisfied. Figure 1 depicts
the two cases in a parameter map. The divergence pa-
rameters, (λD, µD), are related as follows

λD =

{

−2(λc + µD) if µD ≥ − 3
2
λc,

1
2

(

−µD +
√

µ2
D − 2λ2

c

)

if µD ≤ − 3
2
λc.

(B15)

Solving the sums in (B7) within the established spaces
of convergence the following result is obtained

Ξ ≈ 1 +
β

4π

∫ ∞

−∞
dx

∫ ∞

−∞
dy

csch2
(

β
2F (x, y)

)

1− e−β
√
(y)

+
csch2

(

β
2G(x, y)

)

1− eβ
√
(y)

, (B16)

where

G(x, y) = F (x, y)−√
(y),

√
(y) = 2

√

2λy2 + λ2
c. (B17)

Close to divergence, only the part of the integral with
F (x, y) in (B16) goes to infinity. Since in such a case
F (x, y) gets close to zero, the following approximation
becomes applicable

∫ ∞

−∞
dx

∫ ∞

−∞
dy

csch2
(

β
2F (x, y)

)

1− e−β
√
(y)

≈ 4

β2

∫ ∞

−∞
dx

∫ ∞

−∞
dy

eβF (x,y)

F (x, y)2(1 − e−β
√
(y))

(B18)

Neither exponential in the integrand has a significant
contribution to the scaling pattern of the gran-partition
function. Therefore, the integral is further approximated
by

4eβF
⋆

β2(1 − e−β
√
(y⋆))

∫ ∞

−∞
dx

∫ ∞

−∞
dy

1

F (x, y)2
. (B19)

The integral above can be approximated close to the di-
vergence zone, but for this it is necessary to differentiate
a number of subcases.
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3. case 1: 0 ≤ λ < min(−2(µ+ λc))

a. subcase 1: excluding (λD, µD) = (λc,− 3λc

2
)

Function F (x, y) is expanded and the first nonvanishing
terms are retained. The resulting integral can be solved
by standard methods, along the lines of

∫ ∞

−∞
dx

∫ ∞

−∞
dy

1

F (x, y)2
≈

∫ ∞

−∞
dx

∫ ∞

−∞
dy

1
(

F ⋆ − α2
x(x − x⋆)2 − α2

y(y − y⋆)2
)2

= − π

|αx||αy|F ⋆
, (B20)

being

α
2
x = −1

2

∂2F

∂x2

∣

∣

∣

∣

x=x⋆,y=y⋆

, α
2
y = −1

2

∂2F

∂y2

∣

∣

∣

∣

x=x⋆,y=y⋆

. (B21)

An approximated expression to the grand partition func-
tion can be obtained by gathering all the coefficients in-
volved in the derivation. However, it is only the denom-
inator in the last term of (B20) that determines the di-
vergence trend. The resulting expression is valid inside
the parameter zone corresponding to this case. Replacing
the following identities in (B20):

F ⋆ = − (λD − λ)

2
− (µD − µ), (B22)

α2
x = 1, (B23)

α2
y = 1− λ

λc

, (B24)

the grand-partition function can be written as

Ξ =
ξ(λ, µ, λc)

λD−λ
2 + µD − µ

. (B25)

Function ξ(λ, µ, λc) must be well behaved and continuous
at the point (λ, µ) = (λD, µD). The reason why this
derivation cannot accommodate λD = λc is because this
would allow λ to get infinitesimally close to λc, causing
the vanishing of αy in (B24).

b. subcase 2: (λD, µD) =
(

λc,− 3λc

2

)

.

As one of the second-order expansion-terms of F (x, y)
vanishes when λ approaches λc, the next non-vanishing
term of the expansion is considered in (B20). The result-
ing expression reads

∫ ∞

−∞
dx

∫ ∞

−∞
dy

1
(

F ⋆ − α2
x(x− x⋆)2 − γ2

y(y − y⋆)4
)2 =

1

|αx|
√

|γy|(−F ⋆)
5
4

∫ π

0

dθ√
sin θ

∫ ∞

0

dt

√
t

(1 + t2)2
. (B26)

Replacing

F ⋆ = − (λc − λ)

2
− (−3λc

2
− µ), (B27)

α2
x = 1, (B28)

γ2
y =

λ2

2λ3
c

, (B29)

As a consequence, the grand partition function adopts
the next form

Ξ =
ξ(λ, µ, λc)

(

λc−λ
2 − 3λc

2 − µ
)

5
4

, (B30)

in such a way that ξ(λ, µ, λc) be well behaved and con-
tinuous at (λ, µ) = (λc,− 3λc

2 ).

4. case 2: µ
λc

< − 3
2
and λc ≤ λ < 1

2

(

−µ+
√

µ2 − 2λ2
c

)

.

a. subcase 3: excluding (λD, µD) =
(

λc,− 3λc

2

)

.

In this case function F (x, y) has two maxima located at
opposite sides of the y axis. Formally, this would require
to consider the contribution of two expansions, deriv-
ing in two integrals, each of which limited to half the
plane. However, due to the symmetry of F (x, y), this is
effectively equivalent to considering twice one expansion
integrated over the whole plane, since only the contribu-
tion around the expansion point is relevant. Proceeding
in this way, the same expression (B20) found before is
obtained. Likewise, replacing

F ⋆ = −(λD − λ)

(

1− λ2
c

2λ2
D

)

− (µD − µ), (B31)

α2
x = 1, (B32)

α2
y = 1−

(

λc

λ

)2

, (B33)

it follows that the grand partition function can be written
as

Ξ =
ξ(λ, µ, λc)

(λD − λ)
(

1− λ2
c

2λλD

)

+ (µD − µ)
, (B34)

being ξ(λ, µ, λc) a well behaved and continuous function
at (λ, µ) = (λD, µD).

b. subcase 4: (λD, µD) =
(

λc,− 3λc

2

)

.

In close parallel to subcase 2, function F (x, y) is ex-
panded and the first non-vanishing terms that survive in
the limit λ → λc are retained. The resulting expression
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coincides with (B26). Replacing

F ⋆ = −λc − λ

2
−
(

−3λc

2
− µ

)

, (B35)

α2
x = 1, (B36)

γ2
y =

λ2
c

2λ

(

λ2
c − 4(λ2 − λ2

c)
)

, (B37)

the final form of the grand-partition function is found to
be analogous to (B30). The grand partition function can
be written in a general way as

Ξ =
ξ

[(λD − λ)κ(λ) + µD − µ]
α . (B38)

Function ξ does not contribute to the scaling pattern of
Ξ and makes no significant contribution to observables in
the parameter zone near divergence. The other variables
are given by

κ(λ) =

{

1
2 if λD ≤ λc,

1− λ2
c

2λλD
if λD ≥ λc.

(B39)

and

α =

{

1 if (λD, µD) 6= (λc,− 3
2λc),

5
4 if (λD, µD) = (λc,− 3

2λc).
(B40)
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