

CÓDIGO: FOR-DO-109 VERSIÓN: 0

FECHA: 03/06/2020

AUTORIZACIÓN DE LOS AUTORES PARA LA CONSULTA, LA REPRODUCCIÓN PARCIAL O TOTAL, Y PUBLICACIÓN ELECTRÓNICA DEL TEXTO COMPLETO

Puerto Colombia, 24 de mayo de 2020

Señores DEPARTAMENTO DE BIBLIOTECAS Universidad del Atlántico

Asunto: Autorización Trabajo de Grado

Cordial saludo,

Yo, JOSE LUIS LEAL BARROS, identificado(a) con C.C. No. 1.140.873.253 de BARRANQUILLA, autor(a) del trabajo de grado titulado POLIOXOMETALATO ANDERSON-EVANS DE COMO SOPORTADO SOBRE Al₂O₃-ZnO COMO PRECURSOR CATALÍTICO PARA LA HDS DE DIBENZOTIOFENO presentado y aprobado en el año 2020 como requisito para optar al título Profesional de QUÍMICO; autorizo al Departamento de Bibliotecas de la Universidad del Atlántico para que, con fines académicos, la producción académica, literaria, intelectual de la Universidad del Atlántico sea divulgada a nivel nacional e internacional a través de la visibilidad de su contenido de la siguiente manera:

- Los usuarios del Departamento de Bibliotecas de la Universidad del Atlántico pueden consultar el contenido de este trabajo de grado en la página Web institucional, en el Repositorio Digital y en las redes de información del país y del exterior, con las cuales tenga convenio la Universidad del Atlántico.
- Permitir consulta, reproducción y citación a los usuarios interesados en el contenido de este trabajo, para todos los usos que tengan finalidad académica, ya sea en formato CD-ROM o digital desde Internet, Intranet, etc., y en general para cualquier formato conocido o por conocer.

Esto de conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993, "Los derechos morales sobre el trabajo son propiedad de los autores", los cuales son irrenunciables, imprescriptibles, inembargables e inalienables.

Atentamente,

Firma bse leal JOSE LUIS LEAL BARROS C.C. No. 1.140.873.253 de BARRANQUILLA

CÓDIGO: FOR-DO-110 VERSIÓN: 01

FECHA: 02/DIC/2020

DECLARACIÓN DE AUSENCIA DE PLAGIO EN TRABAJO ACADÉMICO PARA GRADO

Este documento debe ser diligenciado de manera clara y completa, sin tachaduras o enmendaduras y las firmas consignadas deben corresponder al (los) autor (es) identificado en el mismo.

Puerto Colombia, 24 de mayo de 2020

Una vez obtenido el visto bueno del director del trabajo y los evaluadores, presento al **Departamento de Bibliotecas** el resultado académico de mi formación profesional o posgradual. Asimismo, declaro y entiendo lo siguiente:

- El trabajo académico es original y se realizó sin violar o usurpar derechos de autor de terceros, en consecuencia, la obra es de mi exclusiva autoría y detento la titularidad sobre la misma.
- Asumo total responsabilidad por el contenido del trabajo académico.
- Eximo a la Universidad del Atlántico, quien actúa como un tercero de buena fe, contra cualquier daño o perjuicio originado en la reclamación de los derechos de este documento, por parte de terceros.
- Las fuentes citadas han sido debidamente referenciadas en el mismo.
- El (los) autor (es) declara (n) que conoce (n) lo consignado en el trabajo académico debido a que contribuyeron en su elaboración y aprobaron esta versión adjunta.

Título del trabajo académico:	POLIOXOMETALATO ANDERSON-EVANS DE COMO SOPORTADO
	SOBRE Al ₂ O ₃ -ZnO COMO PRECURSOR CATALÍTICO PARA LA
	HDS DE DIBENZOTIOFENO
Programa académico:	

Firma de Autor 1:		se	leal	•_				
Nombres y Apellidos:	JOSI	E LUI	S LEAL	BAR	ROS			
Documento de Identificación:	CC	X	CE		PA		Número:	1.140.873.253
Nacionalidad:		-			Lugai	r de res	sidencia:	
Dirección de residencia:								
Teléfono:					Celula	ar:		

CÓDIGO: FOR-DO-111

VERSIÓN: 0

FECHA: 03/06/2020

FORMULARIO DESCRIPTIVO DEL TRABAJO DE GRADO

	POLIOXOMETALATO ANDERSON-EVANS		
TÍTULO COMPLETO DEL TRABAJO DE	DE COMO SOPORTADO SOBRE AI2O3-		
GRADO	ZnO COMO PRECURSOR CATALÍTICO		
	PARA LA HDS DE DIBENZOTIOFENO		
AUTOR(A) (ES)	JOSE LUIS LEAL BARROS		
DIRECTOR (A)	ESNEYDER PUELLO POLO		
CO-DIRECTOR (A)	CARLOS TOLOZA TOLOZA		
	WILLIAM VALLEJO LOZADA		
JURADOS	JAYSON FALS GUERRA		
TRABAJO DE GRADO PARA OPTAR AL			
TITULO DE			
PROGRAMA	QUIMICA		
PREGRADO / POSTGRADO	PREGRADO		
FACULTAD	CIENCIAS BASICAS		
SEDE INSTITUCIONAL	CARRERA 30 NÚMERO 8- 49 PUERTO		
	COLOMBIA – ATLÁNTICO, SEDE NORTE.		
AÑO DE PRESENTACIÓN DEL TRABAJO	2020		
DE GRADO			
NÚMERO DE PÁGINAS	62		
	DESCRIBIR TIPO DE ILUSTRACIONES:		
	Tablas, Figuras.		
MATERIAL ANEXO (Vídeo, audio,	No Aplica		
multimedia o producción electrónica)			
PREMIO O RECONOMIENTO	No Aplica		

POLIOXOMETALATO ANDERSON-EVANS DE CoMo SOPORTADO SOBRE γ-Al₂O₃-ZnO COMO PRECURSOR CATALITICO PARA LA HDS DE DIBENZOTIOFENO

JOSÉ LUIS LEAL BARROS

UNIVERSIDAD DEL ATLÁNTICO FACULTAD DE CIENCIAS BÁSICAS PROGRAMA DE QUÍMICA GRUPO DE INVESTIGACIÓN EN OXI/HIDROTRATAMIENTO CATALÍTICO Y NUEVOS MATERIALES BARRANQUILLA - ATLÁNTICO 2020

POLIOXOMETALATO ANDERSON-EVANS DE CoMo SOPORTADO SOBRE γ-Al₂O₃-ZnO COMO PRECURSOR CATALITICO PARA LA HDS DE DIBENZOTIOFENO

JOSÉ LUIS LEAL BARROS

TRABAJO DE TESIS PARA OPTAR EL TÍTULO DE QUÍMICO

Director: ESNEYDER PUELLO POLO Ph.D

UNIVERSIDAD DEL ATLÁNTICO FACULTAD DE CIENCIAS BÁSICAS PROGRAMA DE QUÍMICA GRUPO DE INVESTIGACIÓN EN OXI/HIDROTRATAMIENTO CATALÍTICO Y NUEVOS MATERIALES BARRANQUILLA - ATLÁNTICO 2020

DIRECTOR

JURADOS

TABLA DE CONTENIDO

INT	FRODUCCIÓN.	14
1.	MARCO TEORICO.	16
	1.1. Petróleo	16
	1.1.2. Normativa colombiana establecida para la cantidad permitida de compuesto azufrados en los combustibles.	s 17
	1.1.3. Hidrotratamiento	18
	1.1.4. Hidrodesulfuración (HDS).	21
	1.1.5. Cinética de reacción HDS del dibenzotiofeno.	23
	1.1.6. Catalizadores en el proceso de HDS	24
	1.1.7. Mejoras en las reacciones de Hidrodesulfuración.	26
	1.1.8. Modificación de soporte γ -Al $_2O_{3.}$	26
	1.1.8. Polioxomolibdatos	29
	1.1.9. Heteropolioxometalatos tipo- <i>B</i> Anderson	30
	1.2.0. Modelo Rim-Edge	31
	1.2.1. Modelo Brim-Edge	32
	2. METODOLOGÍA	34
	2.1. Síntesis de soportes y catalizadores	34
	2.1.1. Síntesis de soporte γ -Al ₂ O ₃ y γ -Al ₂ O ₃ -ZnO mesoporosos:	34
	2.1.2. Síntesis de heteropolioxometalatos de Cobalto tipo Anderson-Evans $(NH_4)_3[CoMo_6O_{24}H_6]$ •7H ₂ O	34
	2.1.3. Síntesis de catalizadores CoMo/γ-Al₂O₃ y CoMo/γ-Al₂O₃-ZnO	34
	2.2. Caracterización de catalizadores.	35
	2.2.1. Fluorescencia de rayos X (FRX)	35
	2.2.2. Área específica B.E.T. de soporte y catalizadores de Co-Mo	35
	2.2.3. Espectroscopia Infrarroja por transformada de Fourier (FTIR).	35
	2.2.4. Espectroscopia Raman	36
	2.2.5. Titulación potenciométrica de n-butilamina	36
	2.3. MEDIDAS DE ACTIVIDAD CATALÍTICA DE HIDRODESULFURACIÓN DE DIBENZOTIOFENO.	36
	2.3.1. Activación de los catalizadores CoMo/γ-Al ₂ O ₃ y CoMo/ γ-Al ₂ O ₃ -ZnO	36

2.3.	2. Evaluación catalítica de CoMo/γ-Al ₂ O ₃ y CoMo/ γ-Al ₂ O ₃ -ZnO en HDS	37
3.	RESULTADOS Y DISCUSIONES	38
3.1.	Fluorescencia de rayos X (FRX).	38
3.2.	Área específica B.E.T de soporte y catalizadores de Co-Mo	39
3.3.	Espectroscopia infrarroja con transformada de Fourier (FTIR)	41
3.4.	Espectroscopia Raman	43
3.5.	Titulación potenciométrica de n-butilamina	44
4.	EVALUACIÓN CATALÍTICA DE HIDRODESULFURACIÓN DE	
DIB	ENZOTIOFENO.	47
5.	CONCLUSIONES	51
6.	RECOMENDACIONES	52
7.	REFERENCIAS.	53
8.	ANEXOS.	63

LISTA DE TABLAS

Tabla 1 Clasificación del petróleo según ºAPI.	16
Tabla 2 Composición elemental de crudos % Peso/Peso	17
Tabla 3 Subprocesos utilizados en el hidrotratamiento	19
Tabla 4. Moléculas con heteroátomo de azufre	22
Tabla 5. Análisis de fluorescencia de rayos X de catalizadores, fase Anderson y soport	te γ-
Al ₂ O ₃ -ZnO	38
Tabla 6. Área Específica y características de estructuras de poros de los soportes y	
catalizadores	41
Tabla 7. Titulación potenciométrica de n-butilamina de soportes y catalizadores	46
Tabla 8. % conversión de HDS de DBT y selectividad a productos al 20% de conversió	òn
de catalizadores.	48
Tabla 9. Constantes de velocidad aparente de los catalizadores para la reacción de HI	DS
de DBT	50

LISTA DE FIGURAS

Figura 1. Mecanismo para la HDS de dibenzotiofeno23
figura 2. Intervalos de temperatura en que se forman las diferentes fases de la alúmina. 27 Figura 3. Representación poliédrica del heteropoliometalato tipo Anderson $[XMo_eH_eO_{24}]^3$ -
30
Figura 4. Esquema general del modelo Rim-edge
figura 5. Sitios Rim v bordes
Figura 6. Sitios donde ocurre las reacciones de DDS y HYD
Figura 7. Esquema de reactor por lotes
Figura 8 . Isotermas de adsorción de N ₂ de los soportes y catalizadores: $[\bullet] \gamma$ -Al ₂ O ₃ $[\blacksquare] \gamma$ -Al ₂ O ₃ -ZnO $[\blacktriangle]$ CoMo/ γ -Al ₂ O ₃ -ZnO $[\bullet]$ CoMo/ γ -Al ₂ O ₃
Figura 9. Distribución de tamaño de poro de los soportes y precursores: $[\bullet] \gamma$ -Al ₂ O ₃ $[\blacksquare] \gamma$ -Al ₂ O ₃ -ZnO $[\blacktriangle]$ CoMo/ γ -Al ₂ O ₃ -ZnO $[\bullet]$ CoMo/ γ -Al ₂ O ₃ 40
Figura 10 . Espectro de los soportes y precursores catalíticos: (a) γ -Al ₂ O ₃ (b) γ -Al ₂ O ₃ -ZnO (c) CoMo/ γ -Al ₂ O ₃ -ZnO (d) CoMo/ γ -Al ₂ O ₃ (e) (NH ₄) ₃ [CoMo ₆ O ₂₄ H ₆]•7H ₂ O42
Figura 11 . Espectro Raman de los catalizadores: (a) CoMoS/γ-Al ₂ O ₃ (b) CoMoS/γ-Al ₂ O ₃ - ZnO
Figura 12. Titulación potenciométrica de n-butilamina para: [•] γ-Al ₂ O ₃ [•] CoMo/γ-Al ₂ O ₃ .45 Figura 13. Titulación potenciométrica de n-butilamina para: [■] γ-Al ₂ O ₃ -ZnO [▲] CoMo/γ- Al ₂ O ₃ -ZnO
Figura 14. % Conversión de DBT vs tiempo (h) de catalizadores: [●] CoMo/ γ-Al ₂ O ₃ [■] CoMo/ γ-Al ₂ O ₃ -ZnO
Figura 15. Estudio cinético del DBT, ajustando datos experimentales con los teóricos(a) para los catalizadores CoMoS/γ-Al ₂ O ₃ , (b) CoMoS/γ-Al ₂ O ₃ -ZnO, (•) BF, () BF, (■) THDBT, () THDBT, (▲) CHB, () CHB

LISTA DE ACRÓNIMOS

BET	Brunauer-Emmett-Teller
BJH	Barret–Joyner–Halenda
API	Instituto americano de petróleo
HDT	Hidrotramiento
HDS	Hidrodesulfuración
HDN	Hidrodesnitrogenación
HCQ	Hidrocraqueo
HDO	Hidrodesoxigenación
HDA	Hidrodesaromatización
HDM	Hidrodesmetalización
DDS	Desulfuración Directa
BF	Bifenilo
HYD	Hidrogenación
СНВ	Ciclohexilbenceno
BCH	Biciclohexil
THDBT	1,2,3,4-Tetrahidrodibenzotiofeno
HHDBT	1,2,3,4,10,11-Hexahidrodibenzotiofeno
MoS ₂	Sulfuro de molibdeno
CUS	Sitios de coordinación no saurados
FTIR	Infrarrojo por transformada de Fourier
FRX	Fluorescencia de rayos X.
K HDS	Constante de velocidad pseudo primer
orden de HDS	

RESUMEN

El precursor catalítico tipo Anderson-Evans de CoMo₆ soportado sobre y-Al₂O₃-ZnO en la Hidrodesulfuración (HDS) de Dibenzotiofeno fue investigada. Los sólidos fueron caracterizados por fluorescencia de rayos X (FRX), propiedades texturales (SBET, Dp y Vp), espectroscopía infrarroja (FTIR), espectroscopia Raman, y acidez superficial (titulación potenciométrica con n-butilamina). Las isotermas de adsorción-desorción de N₂ fueron tipo IV característico de materiales mesoporosos con áreas específicas y-Al₂O₃ (207 m²/g), y-Al₂O₃-ZnO (185 m²/g), CoMo/y-Al₂O₃-ZnO (155 m²/g), y CoMo/y-Al₂O₃ (122 m²/g). FTIR comprobó la presencia del polioxometalato a través de dioxo-terminales Mo-O₂t (1000-800 cm⁻ ¹), enlaces tipo puentes Mo-O-Mo (750-550 cm⁻¹) y vibraciones de Mo-O_c (< 450 cm⁻¹). La espectroscopia Raman mostró los dos modos característicos de MoS₂ para los catalizadores E_{2q}^1 (383 cm⁻¹) y el A_{1q} (408 cm⁻¹). La densidad de sitios ácidos de los catalizadores mostró mayor densidad de sitios para CoMoS/y-Al₂O₃= 17.213 µeg/m² frente a CoMoS/y-Al₂O₃-ZnO= 12,580 µeg/m², exhibió una correlación con la actividad, para el catalizador CoMoS/y-Al₂O₃ (82 %), presentó una conversión de HDS de DBT mayor que CoMoS/y-Al₂O₃-ZnO (52%). Sin embargo, la incorporación del zinc aumentó la selectividad hacia la ruta de DDS, corroborado con la relación de las constantes cinéticas (k_1^*/k_2^*) .

Palabras claves: polioxomolibdato Anderson-Evans, CoMo₆, Al₂O₃-ZnO, HDS, DBT.

ABSTRACT

The Anderson-Evans type CoMo₆ catalytic precursor supported on γ-Al₂O₃-ZnO in Dibenzothiophene Hydrodesulfurization (HDS) was investigated. Solids were characterized by X-ray fluorescence (XRF), textural properties (SBET, Dp and Vp), infrared spectroscopy (FTIR), Raman spectroscopy, and surface acidity (potentiometric titration with n-butylamine). The adsorption-desorption isotherms of N2 were type IV characteristic of mesoporous materials with specific areas y-Al₂O₃ (207 m²/g), y-Al₂O₃-ZnO (185 m²/g), CoMo/y-Al₂O₃-ZnO (155 m²/g), and CoMo/ γ -Al₂O₃ (122 m²/g). The presence of polyoxymetalate was verified by FTIR through Dioxo-terminals Mo-O₂t (1000-800 cm⁻¹), Mo-O-Mo bridge-type links (750-550 cm⁻¹) and Mo-Oc vibrations (<450 cm⁻¹). Raman spectroscopy showed the two characteristic modes of MoS₂ for catalysts E_{2a}^1 (383 cm⁻¹) and A_{1g} (408 cm⁻¹). The acidic site density of catalysts showed higher site density for CoMoS/y-Al₂O₃= 17,213 µeq/m² versus CoMoS/y-Al₂O₃- $ZnO= 12,580 \mu eq/m^2$, exhibited a correlation with the activity, for the CoMoS/y-Al₂O₃ (82 %) catalyst presented a DBT HDS conversion greater than CoMoS/y-Al₂O₃-ZnO (52%). However, zinc incorporation increased selectivity to the DDS route, corroborated with the ratio of kinetic constants (k_1^*/k_2^*) .

Keywords: polyoxomolibdate Anderson-Evans, CoMo6, Al₂O₃-ZnO, HDS, DBT.

INTRODUCCIÓN.

En los últimos años, las refinerías se enfrentan al deterioro anual de la calidad de petróleo debido a las variaciones del contenido de azufre, se clasifica en crudo liviano, mediano, pesado y extrapesado, por el instituto americano de petróleo API de acuerdo con su gravedad °API [1,2]. Las refinerías han utilizados dichas reservas para satisfacer el uso humano, produciendo combustibles comerciales (gasolina y diésel) para los medios de transportes y energía, por otra parte, el agotamiento de las reservas de petróleo convencionales con bajo contenido de azufre y baja viscosidad han optado por utilizar las fracciones de crudo pesado y extrapesado, donde se infiere que hay preocupaciones medio ambientales [3,4].

Las reacciones de combustión ocurridas en los motores de los vehículos producen diversas emisiones de gases como NOx, SOx y CO e interacciona con las moléculas de agua de la atmósfera produciendo lluvias ácidas que ocasionan daños en la salud humana, pérdida de los bosques, ecosistemas, en los acabados de edificaciones y corrosión en las refinerías [5].

Para satisfacer las regulaciones ambientales propuesta por la ley 1205 del 2008 de Colombia decretó que los niveles permisibles de azufre en los combustibles debe ser menores a 50 ppm, esto se debe al alto contenido de impurezas presente en el petróleo pesado o extrapesado, sin embargo, para cumplir la ley se ha utilizado la tecnología de HDT se basa en eliminar las impurezas por medio de la reacción de hidrogeno en exceso, un catalizador y a condiciones altas en presión y temperatura para producir moléculas de bajo peso molecular y H₂S, específicamente el subproceso más usado por las industrias petroleras es la Hidrodesulfuración que consiste en disminuir la concentración de azufre a condiciones de reacción de temperatura entre 300-450 °C y presiones de 40-70 bares de hidrogeno [6,7].

Los catalizadores utilizados en la HDS lo conforman la fase activa de molibdeno o tungsteno promovida por níquel (Ni) o cobalto (Co) soportado en γ-Al₂O₃ que es un

material mesoporoso de bajo costo y es el más utilizado, sin embargo, la alúmina no es inerte e interacciona con el ion promotor cobalto o níquel ocupando los sitios tetraédricos formando espinelas de aluminatos de cobalto o níquel que son fase inactiva en la HDS [8]. La modificación de los catalizadores de hidrotratamiento mediante el método de preparación o el uso de un soporte diferente, la modificación del método de síntesis de la fase activa, ejemplo la formación del complejo Heteropolioxometalatos de fase Anderson, el efecto de los soportes sobre las propiedades físicas y químicas al modificarlos con la utilización de óxidos mixtos facilite una gran dispersión y cambios morfológicos de los sitios catalíticos de las nanopartículas de MoS₂ y las fases CoMoS tipo I y tipo II [9,10].

En este trabajo se basó en modificar las propiedades físicas y químicas del soporte alúmina con óxido de zinc, con una relación molar de soporte $ZnO/(Al_2O_3 + ZnO) = 0,1$ y utilizando el polioxomolibdatos de fase Anderson-Evans de cobalto (NH₄)₄[CoMo₆O₂₄H₆].7H₂O para la HDS del DBT.

1. MARCO TEORICO.

1.1. Petróleo.

El petróleo es un recurso no renovable, que se originó hace 300 millones de años por los restos orgánicos como las plantas y animales, estos llevaron procesos de descomposición lenta por acción bacteriana y así fosilizarse a condiciones de temperatura y presión, además la acumulación de biomasa se situó en las superficies de la tierra y en el fondo de los mares formando las cuencas sedimentarias [11]. El petróleo es un líquido aceitoso, inflamable y varía de color desde incoloro a amarillo, verdoso, rojizo, y marrón a negro, la propiedad física más importante es la viscosidad donde los valores inferiores a 120 centistokes (cSt) a 20°C presentan una baja viscosidad garantizando un bombeo adecuado en las refinerías [12,13]. La naturaleza del petróleo no convencional o pesado es semisólida por la composición química de moléculas de alto peso molecular como los asfáltenos y resinas, la dependencia más importante es la temperatura ya que disminuye la viscosidad por el cambio de estructural coloidal de los semisólidos [14].

El Instituto Americano de Petróleo (API), generalmente clasifica el crudo de acuerdo con su gravedad en (°API) y (g/m³) mostrado en la tabla 1.

Clasificación del petróleo	Densidad °API	Densidad (g/cm ³)
Ligero	> 31,1	<0,87
Medio	22,3–31,1	0,92–
0,87		
Pesado	10–22,3	1,0—
0,92		
Extrapesado	<10	> 1,0

Tabla 1 Clasificación del petróleo según ºAPI [15].

La composición química del petróleo se deriva por una mezcla de hidrocarburos en fase líquida, generalmente se clasifica en cuatro grupos: alcanos o parafinas, naftenos o cicloparafinas, asfalticos y compuestos aromáticos su composición varía de acuerdo a su ubicación geográfica, edad de yacimiento y profundidad del pozo [16,17]. Los hidrocarburos aromáticos presentan en sus estructuras heteroátomos como el azufre, oxigeno, nitrógeno y pequeñas trazas de metales pesados (porfirinas) tales como vanadio, níquel, hierro y cobre. En la tabla (2) se muestra la composición elemental del crudo en porcentaje en peso [18].

ELEMENTO	PORCENTAJE DE COMPOSICIÓN
Carbono	83-87
Hidrogeno	10-14
azufre	0,05-6
Oxigeno	0,05-1,5
Nitrógeno	0,1-2
Vanadio-Níquel	100 ppm

Tabla 2 Composición elemental de crudos % Peso/Peso[19].

1.1.2. Normativa colombiana establecida para la cantidad permitida de compuestos azufrados en los combustibles.

Por las grandes cantidades de emisiones de gases tóxicos emitidos al ambiente por las diferentes impurezas presentes en los combustibles comerciales, el congreso de Colombia concreta en la ley 1205 del 2008 con el fin de mejorar la calidad de vida y certificar el derecho constitucional al agrado de un ambiente sano y de minimizar el impacto ambiental negativo, el ministerio de Minas y Energía, deben extender la reglamentación para el mejoramiento del diésel, mediante la disminución progresiva de los niveles de azufre presentes en dicho combustible hasta alcanzar los estándares internacionales de concentraciones inferiores de 50 partes por millón (ppm) de azufre. Ecopetrol es una de las refinerías más importantes en Colombia, desde los años noventa el contenido de azufre en los combustibles era de 5000 ppm, hasta entonces la concentración llegó a menos de 50 ppm de azufre un porcentaje del 98%, esta refinería ha trabajado para satisfacer las normas ambientales y disminuir la producción de gases contaminantes para no afectar al estado colombiano. En Suramérica Colombia se encuentra en el segundo puesto, superado por chile, en américa latina ocupa el tercer puesto donde ocupa los dos primeros lugares México y Chile. La ley se implanto a partir del 1^{ro} de enero del 2010, indica que los transportes masivos, vehículos, entre otros, deben contener diésel con concentraciones inferiores de 50 ppm [6,20, 21].

1.1.3. Hidrotratamiento

El hidrotramiento es una tecnología utilizada en la industria de petróleo con el objetivo de reducir las impurezas presentes en el crudo pesado como azufre, nitrógeno, oxígeno y metales pesados para la obtención de aceites livianos y luego procesarlo para conseguir gasolina limpia y diésel de alta calidad^[23]. Las normativas medio ambientales exigen a las refinerías petroleras obtener los diferentes productos refinados por concentración inferiores de $(S < 10 \mu g / g)$ para la protección del ambiente y satisfacer las demandas del mercado, sin embargo existen condiciones de reacciones óptimas para el proceso de hidrotratamiento catalítico, que generalmente operan en el rango de temperaturas altas entre 300-400°C y presiones de 40-70 bares, la utilización de hidrogeno y un catalizador para dichos subprocesos de hidrotramiento [22,24]. Los catalizadores utilizado en el HDT están compuestos por metales oxídicos dispersos en el soporte (y-Al₂O₃), después de la sulfuración hay un cambio estructural y se forma la fase activa sulfurada de Co(Ni)-Mo (W)-S, las refinerías utilizan tales condiciones en reactores de lecho fijo, su principal desventaja es la desactivación o envenenamiento de los catalizadores, por el taponamiento de los poros disminuyendo el área de la superficies de los sitios activos por los contaminantes presente en el crudo; en consecuencia reduce la actividad del catalizador, la conversión y el deterioro de las especificaciones de los productos finales [22,25]. Existen diversas reacciones determinadas en dichos procesos que es la hidroconversión, se basa en hidrogenar a los hidrocarburos poli aromáticos en presencia de hidrogeno, y el segundo es la purificación consiste en el rompimiento de enlaces de carbono-heteroatomos. Los subprocesos que se presentan en el hidrotratamiento se muestran en la tabla 3 [22].

Procesos	Tratamiento
Hidrodesulfuración (HDS)	Eliminación de azufre de compuestos
	heterocíclicos azufrados a través de
	una reacción con hidrógeno (H ₂),
	produciendo de H ₂ S. Este proceso se
	realiza a altas presiones (> 200 atm)
	y temperaturas (300-450ºC).
Hidrodesnitrogenación (HDN)	La eliminación de nitrógeno de los
	compuestos heterocíclicos
	nitrogenado en presencia de
	hidrogeno v catalizador. Este proceso
	se realiza a altas presiones (> 200
	atm) v temperaturas (300-450°C)
Hidrodesoxigenación (HDO)	Reducción de azufre bajo
	condiciones de temperaturas de 50°C
	y presiones atmosféricas.
Hidrodesaromatización (HDA)	Hidrogenación de hidrocarburos
	aromáticos presencia de hidrogono a
	aromaticos presencia de mutogeno a

Tabla 3 Subprocesos utilizados en el hidrotratamiento [22].

bajas presiones y altas temperaturas.

Hidrodesmetalización (HDM)	Eliminación de metales pesados				
	presentes en moléculas conocidas				
	porfirina, consiste en hidrogenación y				
	seguido rompimiento de enlaces de heteroatomos-metal, a condiciones altas de temperaturas y presión en				
	presencia de hidrogeno.				
Hidrogenación (HID)	Conversión de compuestos				
	insaturados en saturados en				
	presencia de hidrógeno.				
(100)					
Hidrocraqueo (HCQ)	Rompimiento de moleculas organicas				
	de cadena larga en una corta en				
	presencia de hidrogeno.				

1.1.4. Hidrodesulfuración (HDS).

El principal subproceso en las industrias petroleras es la *hidrodesulfuración*, que consiste en eliminar o reducir la concentración de azufre en el crudo pesado, con el tratamiento catalítico que consiste en una reacción de hidrogeno con diversos compuestos de azufre para producir sulfuro de dihidrogeno H₂S y compuestos con menor peso molecular a altas temperaturas y presiones parciales [26-28].

Las reacciones se dan en reactores de lecho fijo que son comúnmente operados en el rango de temperaturas de 300- 450°C, y en presiones de hidrogeno (H₂) de 3.0-5.0 MPa. El objetivo de este proceso es reducir la contaminación ambiental, el envenenamiento de los catalizadores, la corrosión de las refinerías y enfermedades respiratorias a los seres vivos, por tales razones han utilizado esta alternativa para obtener productos destilados con bajos porcentajes de azufre que es el principal contaminante, sin embargo, al reaccionar con oxígeno forma diversos gases tóxicos como SO₂ y SO₃ interaccionando rápidamente con las partículas de aguas presente en la atmósfera formando lo que es conocido las lluvias ácidas, y ocasionando daños severos ya mencionados [29-31].

Las moléculas presentes en el petróleo con heteroátomos de azufre varía según su reactividad, los sulfuros son muy reactivos comparándolo con las moléculas más refractarias como el dibenzotiofeno, 4,6-dimetildibenzotiofeno, naftobezotiofeno entre otros, en la tabla 4 se muestra los compuestos de azufre presente en el petróleo [32].

Tipo de compuestos	Estructuras
Tioles (mercaptanos)	R-S-H
sulfuros	R-S-R'
Disulfuros	R-S-S-R'
Tiofeno	s
Benzotiofeno	S
Dibenzotiofeno	S
4,6-Dimetildibenzotiofeno.	H ₃ C CH ₃

Tabla 4. Moléculas con heteroátomo de azufre.

1.1.5. Cinética de reacción HDS del dibenzotiofeno.

En general, el mecanismo de reacción de DBT a través de HDS, presenta dos rutas principales una es la DDS o vía hidrogenólisis que consiste en la eliminación de azufre sin hidrogenar los anillos aromáticos, la otra es la hidrogenación (HYD), en la que los ciclos aromáticos se hidrogenan y forman diferentes intermediarios para una posterior desulfuración. En la figura 1 se muestra las reacciones paralelas del DBT.

Figura 1. Mecanismo para la HDS de dibenzotiofeno[33].

La reacción de DBT con hidrógeno forma bifenilo (BF) como producto orgánico predominante, consiste en la hidrogenólisis directa del enlace C-S de DBT a través de DDS. En el mecanismo de la ruta HYD, los productos intermediarios que se forman DBT son tetrahidrodibenzotiofeno directamente а partir de (THDBT) V hexahidrodibenzotiofeno (HHDBT) que son muy reactivos y son difíciles de aislar para la detección, la formación del ciclohexilbenceno como producto secundario ocurre un rompimiento de enlace C-S de los intermediarios, además se hidrogena el BF para formar (CHB). El biciclohexilo (BCH) es el producto terciario formado en trazas a través de la hidrogenación lenta de CHB formado por cualquiera de las dos vías [33-35].

Para el cálculo de las constantes de reacción del dibenzotiofeno se basa en el modelo propuesto por H. Farag. Las ecuaciones diferenciales para el cálculo de las constantes catalíticas para las rutas de reacciones de hidrogenólisis y la hidrogenación del DBT son:

$$C_{DBT} = C_{DBT^0} \cdot e^{-kt}$$
(1)

$$C_{BF} = \frac{C_{DBT^{0}} \cdot k_{1}^{*}}{k_{3}^{*} \cdot k} \left[e^{-kt} - e^{-k_{3}^{*}t} \right]$$
(2)

$$C_{\text{THDBT}} = \frac{C_{\text{DBT}^{0}} \cdot k_{2}^{*}}{k_{4}^{*} \cdot k} \left[e^{-kt} - e^{-k_{4}^{*}t} \right]$$
(3)

$$C_{CHB} = \frac{C_{DBT^{0}} \cdot k_{3}^{*} \cdot k_{1}^{*}}{k_{3}^{*} - k} \left[\frac{1}{k_{3}^{*}} e^{-k_{3}^{*} t} - \frac{1}{k} e^{-kt} \right] + \frac{C_{DBT^{0}} \cdot k_{4}^{*} \cdot k_{2}^{*}}{k_{4}^{*} - k} \left[\frac{1}{k_{4}^{*}} e^{-k_{4}^{*} t} - \frac{1}{k} e^{-kt} \right] + \frac{C_{DBT^{0}} \cdot k_{4}^{*} \cdot k_{2}^{*}}{k} \left[\frac{1}{k_{4}^{*}} e^{-k_{4}^{*} t} - \frac{1}{k} e^{-kt} \right] + \frac{C_{DBT^{0}} \cdot k_{4}^{*} \cdot k_{2}^{*}}{k}$$
(4)

Donde $k = k_1K_1 + k_2K_2$, k_1 y k_2 son constantes de velocidades intrínsecas para las rutas de DDS y HYD, y K_1 y K_2 son las constantes de adsorción de equilibrio sobre los sitios catalíticos para la DDS y HYD respectivamente. Las constantes de velocidad k_1^* y k_4^* están relacionadas con las reacciones de hidrogenólisis (división del enlace C-S), mientras que k_2^* y k_3^* corresponden a la hidrogenación de DBT y BF, de este modo se determina las constantes de velocidad para la reacción del DBT [36-38].

1.1.6. Catalizadores en el proceso de HDS.

Los catalizadores suelen estar conformado por dos componentes: La fase activa y el soporte, para el proceso de la HDS están basados en molibdeno combinado con cobalto o níquel (Co o Ni), y soportado en una matriz de óxido de aluminio (γ-Al₂O₃), la característica principal para los catalizadores es que las fases activas se encuentren reducidos o en forma de sulfuros (Co (Ni)-MoS₂), sin embargo, las combinaciones de

los sulfuros de Mo y (Co-Ni) en los catalizadores de HDS aumenta la actividad con respecto a la suma de las actividades de los sulfuros individuales, este efecto se denomina sinergia catalítica [39].

Existen diferentes investigaciones basadas en el proceso de HDS para cumplir las regulaciones ambientales, por ende, se ha reportado mejoras en los catalizadores para aumentar la actividad catalítica.

Palcheva, y col.; 2012 El objetivo es ver la influencia de la modificación de Ni, Co o B del soporte de alúmina sobre las propiedades y la actividad HDS de NiMo/γ-Al₂O₃ utilizando heteropolioxomolibdato de Ni de tipo Anderson para la hidrodesulfuración del benzotiofeno, los resultados obtenidos el NiMo₆-/Al-Ni con relación molar de níquel 0,24 dio una actividad casi el doble que los catalizadores NiMo₆-/Al, NiMo₆/Al-B, y NiMo₆-O/Al-Co esto es por la formación de mayor número de sitios activos y a su vez una mayor dispersión [40].

Polo y col.; 2015 Es ver la modificación de γ-Al₂O₃ con cerio al 1% y 3% por el método de impregnación y dopaje utilizando heteropolioxomolibdato de Ni de tipo Anderson para la hidrodesulfuración del tiofeno, según los resultados los catalizadores impregnados con cerio tienen una mayor actividad intrínseca respecto a los catalizadores dopados, comparando con el NiMo₆/γ-Al₂O₃ se observa que los modificados con cerio al 3% poseen mayor actividad excepto los de 1% de cerio, lo cual destaca la importancia de la presencia del cerio y su concentración en el catalizador [41].

Romero, y col.; (2015) analizaron las propiedades catalíticas del heteropolioxometalato de Fe-Mo. Co-Mo Ni-Mo soportados tipo Anderson V en zeolitas β y no soportados para hidrodesulfuración de tiofeno, los resultados mostraron que los catalíticos contenían la zeolita-β presentaron precursores aue mejores actividades en HDS de tiofeno en el siguiente orden: CoMo₆/zeolita- β (88,8%) >

25

NiMo₆/ zeolita- β (87,93%) > FeMo₆/ zeolita- β (88,90%) > NiMo₆ (55%) > CoMo₆ (25,70%) > FeMo₆ (23,90%) [42].

Estas investigaciones han mostrado una mejora para las propiedades fisicoquímicas de catalizadores para la HDS como la modificación de soporte, utilización de heteropolioxomolibdato de Ni, Co, Fe y entre otros, y utilización nuevos soportes, por ende, este trabajo se basa en la modificación del soporte γ-Al₂O₃ con óxido de Zinc y la utilización de heteropolioxomolibdato de Co, a condiciones de temperatura 320°C y 300 psi en un reactor tipo batch para la HDS de dibenzotiofeno.

1.1.7. Mejoras en las reacciones de Hidrodesulfuración.

Por los nuevos problemas presentados por el agotamiento de crudo liviano, la comunidad científica ha buscado nuevas alternativas para el mejoramiento de los catalizadores en el HDT y son: cambio de la naturaleza de la fase activa con aditivos, la modificación de soporte, implementación de nuevas rutas de síntesis, usos de metales nobles y diferentes métodos de activación esto es importante para mejorar la actividad y la selectividad de dichos procesos [43].

1.1.8. Modificación de soporte γ-Al₂O_{3.}

Para obtener alta actividad en la HDS se necesita un catalizador con gran dispersión de los componentes activos, una completa sulfuración de los óxidos y promoción del Mo, W por los promotores de Co o Ni, sin embargo, la naturaleza de los soportes catalíticos juega un papel importante como las interacciones con el metal activo, propiedades acido-base, electrónicas y propiedades texturales (área específica, volumen de poro y diámetro de poro) [44,45].

La γ-Al₂O₃ es el soporte más comúnmente utilizado para los catalizadores HDS por sus propiedades físicas, químicas y catalíticas, es decir, permite una alta dispersión, es mecánicamente fuerte, tiene una buena textura, posee estabilidad térmica, áreas

específicas entre (0,5 y 600 m²/g), amplia distribución de poros y diferentes niveles de acidez superficial, específicamente posee un área de especifica moderada de 250 m²/g, estabilidad térmica de hasta 1173 K además es de bajo costo. La temperatura de calcinación para la formación de γ-Al₂O₃ se da a temperaturas de 723K, este factor es importantes porque presenta cambios físicos y químicos como la perdida de agua adsorbida y cambios en la estructura por la variación en el tamaño de poro, En la figura. 2 se muestra las diferentes temperaturas para las diferentes estructuras cristalinas de la alúmina [46].

Figura 2. Intervalos de temperatura en que se forman las diferentes fases de la alúmina [47].

Las propiedades físicas de los soportes ZrO_2 y TiO₂ antes del año 1991 no eran optimas, ya que el área específica se mantuvo por debajo de 100 m²/g (después de la calcinación a 773 K), lo que conllevo a buscar nuevas alternativas para mejorar estos soportes, donde chiyoda Corporation desarrollo un método de precipitación acuosa llamado "oscilación de pH" y obtuvo un área de 120 m²/g para el TiO₂ mesoporoso, el método de síntesis de los soportes con utilización surfactante, la combinación de óxidos supera el área pequeña de TiO₂ o ZrO₂ es, Por ejemplo el TiO₂ se combinó con γ -Al₂O₃ (2-10%) lo que proporcionó áreas específicas muy altas [48,49].

Se han publicado estudios sobre el efecto de la adición de un segundo promotor como Zn en catalizadores de molibdeno, y con diferentes procedimientos de impregnación. El estudio de los catalizadores CoZn-Mo/Al₂O₃, los dos promotores Co y Zn se impregnaron simultáneamente sobre Mo/Al₂O₃. *Fierro y col.; (1984)* encontró para la HDS del gasóleo que el Co fue reemplazado parcialmente por Zn, el efecto se atribuyó a una disminución en la formación de la fase inactiva de aluminatos de cobalto

(CoAl₂O₄) y en consecuencia mejora la cantidad de Co de superficie coordinada octaédricamente, que se indujo por la coordinación de preferencia de Zn²⁺ a sitios tetraédricos, en lugar de Co²⁺ [50]. *Thomas y col.; (1994)* sintetizaron catalizadores Zn-CoMo/γ-Al₂O₃, y encontraron que Zn puede promover la reacción HDS del gasóleo sobre el catalizador de CoMo/γ-Al₂O₃. El aumento de la actividad se debió a los cambios de dispersión y distribución de los promotores, esto significa el óxido de cobalto para el catalizador de Zn-CoMo/γ-Al₂O₃ está débilmente unida a la alúmina, por lo tanto, se encuentra dispersado sobre la superficie y formó fácilmente la fase activa de molibdeno promovida por cobalto [51].

Chen y col.; (2014) sintetizaron catalizadores multimetálicos Ni_xZn_yMoW con diferentes relaciones molares de Ni/Zn, para la HDS del 4,6-DMDBT. En la actividad catalítica mostró que NixZnyMoW tienen una actividad más alta que la del catalizador comercial CoNiMoW/Al₂O₃ que podría atribuirse al efecto sinergia entre Ni/Zn y Mo/W y a los altos contenidos de metales activos. Por otra parte, ZnMoW sin Ni ha mostrado una actividad relativamente baja [52]. *Chen y col.; (2015)* sintetizaron catalizadores Ni_xZn_yAl_zMoW con diferentes relaciones molares de Zn/Al, para la HDS del 4,6-DMDBT. Encontraron que el Zn como promotor disminuye la interacción entre la alúmina y los componentes activos Ni, Mo y W ocasionando una mayor actividad para los catalizadores Ni_xZn_yAl_zMoW que el catalizador comercial CoNiMoW/Al₂O₃ y se atribuye por el alto contenido del metal activo [53].

Liu y col.; (2015) mostraron el estudio del efecto del Zn a partir de diferentes relaciones molares Ni/Zn (10:0 a 9.5:0.5, 8:2, 5:5, y 0:10) en NixZnyMo10 no soportadas. Se realizó la HDS de DBT con Ni9.5Zn0.5Mo10, presentando una mayor actividad que estuvo relacionada con la mayor reducción de los precursores oxidicos, como mostró XPS, contrario al catalizador Zn10Mo10 que presentó especies difíciles de reducir, ocasionando una menor actividad y una alta selectividad de HID [54].

Xuebing Li y col.; (2017) prepararon una serie de catalizadores de níquel soportados en ZnO-Al₂O₃, con diferentes relaciones atómicas de Zn/Al= (2, 3 y 5) para la

despolimerización catalítica de la lignina, utilizando el compuesto modelo de 2-fenoxi -1feniletanona. Los catalizadores presentaron alta conversión hacía etilciclohexano cuando al aumentar la relación atómica, se puede observar la basicidad total de los catalizadores aumenta con el contenido de aluminio, donde el área tiene una influencia significativa en la cantidad de sitios básicos, cabe resaltar que el catalizador con relación Zn/AI = 5 presenta un área específica grande y una basicidad moderada determinada por TPD que son ventajosas para la reacción [55].

Liu y co.; (2018) los adsorbentes Cu-ZnO-Al₂O₃ fueron sintetizados por autoensamblaje inducida por evaporación, con valores de ZnO de 0-25 %p/p. para la desulfuración profunda de azufre y alta reactividad. El adsorbente con mayor actividad es el Cu-5ZnO-Al₂O₃ (65,4%), esto se debe a que el ZnO y Al₂O₃ estabilizaron las partículas de cobre para evitar su sinterización, el ZnO se encontró bien disperso y con una interacción débil en el soporte mesoporoso, que podría facilitar su sulfuración con H₂S resaltando, que el ZnO no solo actúa como soporte, sino también como un aceptador de azufre. El orden de mayor conversión de ZnO es: Cu-5ZnO-Al₂O₃ > Cu-10ZnO-Al₂O₃ > Cu-15ZnO-Al₂O₃ > Cu-20ZnO-Al₂O₃ > Cu-5ZnO-Al₂O₃ [56].

1.1.8. Polioxomolibdatos.

El primer hallazgo de los Polioxometalatos data de 1826 por el científico Berzelius cuando describió el precipitado amarillo que se origina cuando se agrega molibdato de amonio al ácido fosfórico cuyo producto es el 12-molibdofosfato de amonio, (NH₄)₃[PMo₁₂O₄₀]*nH2O. Los (POMs) son clústeres aniónicos formados por oxígeno y metales de transición del grupo V-VI y se presentan en sus estados de oxidación más altos. Los elementos metálicos (M) de estos compuestos habituales son el Mo, W y el V, aunque tanto el Nb como el Ta también pueden actuar como metales addenda. La estructura de esta familia está formada por unidades poliédricas MOx donde el número de coordinación de los centros metálicos oscila entre 4 y 7 y el octaedro es la geometría que se adopta con mayor frecuencia. Dependiendo de su composición, los POMs pueden clasificarse en dos grupos principales: *Isopolioxometalatos* (iso-POMs) De

fórmula general [MmOy] ⁿ⁻, contienen únicamente metal-oxígeno y los *Heteropolioxometalatos* (hetero-POMs) De fórmula general [XxMmOy] ⁿ⁻, que, además de metal y oxígeno, contienen otros elementos que actúan como heteroatomos [57].

1.1.9. Heteropolioxometalatos tipo-*B* Anderson.

Los heteropolianiones de tipo Anderson, representados por la fórmula general $[XM_6O_{24}H_x]^{n-}$ figura 3 tiene una estructura plana hexagonal con simetría D_{3d} compuesta por un heteroátomo central (X = Ni²⁺, Cr³⁺, Te⁶⁺, Co³⁺, Cu²⁺⁾ rodeado por seis grupos octaédricos de MO₆ (radio ~6 Å). Los M son metales tales como el Mo y W comparten una arista con alguno de sus dos vecinos MO₆ y un vértice con el octaedro XO₆ o X(OH)₆. Los heteropoloxiometalatos se clasifican en dos grupos de acuerdo al número de protones unidos al octaedro, cuando es tipo A x= 0 (XO₆) y tipo B x = 6 (X(OH)₆) [58].

Figura 3. Representación poliédrica del heteropoliometalato tipo Anderson [XMo₆H₆O₂₄]³⁻.

Un ejemplo son las sales de amonio del [CoMo₆ O₂₄H₆] ^{3–} es una estructura de tipo B Anderson, presenta simetría planar hexagonal D_{3d} y está compuesta por un ion de cobalto central rodeado por seis grupos octaédricos de MoO₆. Esta estructura en el punto catalítico garantiza un buen contacto con la superficie con el soporte y una distribución bien dispersa de los sitios activos [59].

1.2.0. Modelo Rim-Edge.

Las nanoparticulas disulfuro de molibdeno (MoS₂) tiene una estructura en forma de capa o disco que permite que los iones de molibdeno (Mo⁴⁺) se coloquen en entre dos capas de azufre (S²⁻), el Mo está rodeado de seis átomos de azufre y este su vez de 3 átomos de Mo. El modelo Rim-edge consiste en discos orientadas de tal manera que los bordes de molibdeno de una capa se colocan debajo o debajo de los bordes de azufre de una capa vecina como se presenta en la figura 4. De acuerdo con el modelo de "Rim-Edge", los sitios HYD ocurren en los bordes, mientras que los sitios DDS están situados tanto en los sitios Rim y los bordes de los cristalitos de MoS₂ [60].

Figura 4. Esquema general del modelo Rim-edge.

Este modelo es característico por explicar la reactividad de los catalizadores, el modelo de "Rim-Edge" presenta a los planos basales inertes (ver fig. 5), mientras que los planos de borde son reactivos. La altura de los discos de MoS₂ influye en la selectividad, quiere decir que va variar la relación de los sitios de rim (activos en la hidrogenación y la ruptura del enlace C-S) hacia los bordes (activos solo en la ruptura del C-S) [61]. La fase activa del catalizador, el sulfuro de molibdeno, la alta dispersión y al tamaño nanométrico de los discos, las partículas de MoS₂ son muy activas para promover la hidrogenación. De acuerdo con el modelo "Rim-Edge" se pueden distinguir dos tipos de sitios con respecto a su posición sobre las láminas apiladas de MoS₂. Los

sitios de la rim se ubican solo en la primera y la última lámina del apilamiento; hidrogenan moléculas y rompen enlaces C–S. Sobre las láminas internas del apilamiento, solo están presentes los sitios de borde que rompen los enlaces C–S. Más recientemente, el modelo se extendió a catalizadores soportados en alúmina o sílice [62].

Figura 5. Sitios Rim y bordes.

1.2.1. Modelo Brim-Edge.

Este modelo propone que las partículas de MoS₂ presenta dos tipos de sitios activos, en los bordes ocurre la hidrogenación para eliminar el azufre a partir de la hidrogenación de los enlaces dobles C=C y en los sitios brim la ruptura directa del enlace C-S, es decir la desulfuración directa figura 6.

Figura 6. Sitios donde ocurre las reacciones de DDS y HYD.

Este modelo consiste en sitios brim en las losas de MoS₂ que están involucrados en las reacciones de hidrogenación. Los sitios de brim son los bordes de Mo totalmente

coordinados con azufre de las losas MoS₂ con un carácter metálico. Dado que los sitios de borde de Mo es un sitio muy abierto, a diferencia del sitio de vacante, puede adsorber DBT y otras moléculas grandes que contienen azufre con estructura aromática, horizontalmente a través de la unión sin ninguna restricción estérica. La interacción entre el sitio de brim Mo [sitio HYD] y el sitio de vacante S edge [sitio DDS] se considera importante en este mecanismo [63,64].

2. METODOLOGÍA.

2.1. Síntesis de soportes y catalizadores.

2.1.1. Síntesis de soporte γ-Al₂O₃ y γ-Al₂O₃ -ZnO mesoporosos:

Para la preparación de 6 g de cada soporte se mezcló en agua desionizada bajo agitación constante a 85°C nitrato de aluminio nonahidratado (Al(NO₃)₃•9H₂O), urea (CO(NH₂)₂), almidón (C₆H₁₂O₆), ácido cítrico (C₆H₈O₇), mientras que el soporte modificado se disolvió con una cantidad apropiada de cloruro de Zinc dihidratado (ZnCl₂•H₂O) con ácido cítrico (C₆H₈O₇) y se adicionó a la mezcla inicial, dicho procedimiento se realizó manteniendo una relación másica de 1:0,17:0,54:0,1 y 1:0,17:0,84:0,1:0,1; respectivamente. Se ajustó el pH a 8 con hidróxido de amonio (NH₄OH), las dos mezclas se mantuvieron en agitación y calentamiento hasta la formación del gel que se secó a 110°C durante 2h y se calcinó a 650°C por 5h [65].

2.1.2. Síntesis de heteropolioxometalatos de Cobalto tipo Anderson-Evans $(NH_4)_3$ [CoMo₆O₂₄H₆]•7H₂O.

La preparación de la fase Anderson-evans $(NH_4)_3[CoMo_6O_{24}H_6]\cdot7H_2O$, se realizó por reacción en solución acuosa de $(NH_4)_6[Mo_7O_{24}]\cdot4H_2O$ con $Co(NO_3)_2\cdot6H_2O$ y H_2O_2 , en proporciones estequiométricas ajustado el pH entre 5 y 6 a temperatura ambiente y bajo agitación constante. Se obtuvo un precipitado, de color verde esmeralda el cual se filtró, y se lavó con agua destilada y luego se secó a 105°C por 12h [66].

2.1.3. Síntesis de catalizadores CoMo/γ-Al₂O₃ y CoMo/γ-Al₂O₃-ZnO

Se tomó 6 g del soporte sintetizado y se impregnó a exceso de volumen de poro con 30 mL de solución acuosa de (NH₄)₄[CoMo₆O₂₄H₆]•7H₂O a 20% p/p de Mo, y se mantuvo bajo agitación constante a temperatura de 50 °C hasta sequedad del solvente. Por último, el sólido obtenido se secó a 105 °C por 12h.

2.2. Caracterización de catalizadores.

2.2.1. Fluorescencia de rayos X (FRX)

Las muestras a analizar (sin dilución) sobre base de cera espectrométrica de la marca Merck, fueron llevadas a una prensa hidráulica a 120 kN por minuto. De este modo se obtuvieron cuatro pastillas prensadas de 36 nm de diámetro. El análisis se realizó con el software SemiQ, haciendo 11 barridos, con el fin de detectar todos los elementos presentes en la muestra. Se utilizó un espectrómetro de fluorescencia de rayos X, MagixPro PW–2440 Philips equipado con un tubo de Rodio, con una potencia máxima de 4KW. Este equipo tiene una sensibilidad de 200ppm (0.02%) en la detección de elementos pesados metálicos.

2.2.2. Área específica B.E.T. de soporte y catalizadores de Co-Mo.

El estudio de área específica (SBET) se realizó en un equipo (Micromeritics 3FLEX[™]) mediante el método de Brunauer-Emmett-Teller (BET), a partir de las mediciones de fisisorción de nitrógeno a 77 K. El área específica externa fue evaluada por el método t-plot. El área específica microporosa (Smicro) fue calculada por Smicro =SBET – Sext. Asimismo, para la estimación de la distribución de tamaño de poro y volumen de mesoporos (V meso) se aplicó el método Barret–Joyner–Halenda (BJH), el volumen de microporos (V micro) se evaluaron mediante el método t-plot, y el volumen total (V total) es la sumatoria del volumen de microporos y volumen de mesoporos. Antes de las medidas, las muestras fueron desgasificados en 573K por 16h en vacío de 10⁻⁶ mmHg y se se hicieron en un intervalo de presión relativa (P/P₀) desde 0.0025 hasta 0.95 [67].

2.2.3. Espectroscopia Infrarroja por transformada de Fourier (FTIR).

Sobre la investigación detallada de las vibraciones de enlace presente en los catalizadores y soportes, se realizó en un espectrómetro con transformada de Fourier (Shimadzu FTIR MODELO AFFINITY-1), en un rango de barrido entre 400

y 4000 cm⁻¹. Antes de las mediciones, se prepararon pastillas de $KBr_{(s)}$ y fueron secadas a 105°C.

2.2.4. Espectroscopia Raman.

La espectroscopia Raman permite obtener información detallada acerca de la presencia y estructura molecular de los sulfuros de molibdeno superficiales de los catalizadores. Este análisis se realizó en un Horiba Scientific modelo LabRam HR Evolution, equipado con un láser de 532 nm, una potencia entre (41.1-87.6) KW, y un tiempo de integración entre (10-15) s.

2.2.5. Titulación potenciométrica de n-butilamina.

Acerca de determinar la cantidad de sitios ácidos y fuerza ácida de los catalizadores y soportes, se utilizó un pH-metro (LAQUA-HORIBA scientific) y un electrodo (pH/ION/ COND-METER- F-74 BW), (Water quality meter) además se agregó 200 uL de una solución de n-butilamina (0,1 N) y 0,10 g de sólido en 50 mL de acetonitrilo puro. Posteriormente se mantuvo en agitación por 3 horas, finalmente se realizó las respectivas valoraciones potenciométricas.

2.3. MEDIDAS DE ACTIVIDAD CATALÍTICA DE HIDRODESULFURACIÓN DE DIBENZOTIOFENO.

2.3.1. Activación de los catalizadores CoMo/γ-Al₂O₃ y CoMo/ γ-Al₂O₃-ZnO.

La activación de 300 mg de los precursores catalíticos se realizó en un reactor de flujo continuo de lecho fijo, pasando una mezcla de CS₂ (2%)/n-heptano y 50 mL/min de H₂ hasta 340 °C aumentando la temperatura a 5°C/min, donde permaneció por 5h. Posteriormente, la muestra se enfrió hasta temperatura ambiente y se almacenó en solución de ciclohexano para evitar la oxidación del precursor activado.

2.3.2. Evaluación catalítica de CoMo/γ-Al₂O₃ y CoMo/ γ-Al₂O₃-ZnO en HDS.

En este trabajo, la HDS de dibenzotiofeno (DBT, Aldrich 99.9%) se llevó a cabo en un reactor por lotes de alta presión (figura 8), donde se coloca una muestra de 250 mg de catalizador sulfurado y se introdujo en una solución de DBT en ciclohexano con concentración de 500 ppm de S.

Figura 7. Esquema de reactor por lotes.

El reactor se presurizó con 450 psi de hidrógeno y se calentó hasta 320°C hasta alcanzar 1200 psi DE hidrógeno, con agitación de 300 rpm. El tiempo de reacción fue de 360 min y el muestreo se hizo en períodos de 0, 30, 60, 120, 180, 240, 300 y 360 minutos. Luego, el análisis de las muestras se efectuó para determinar la actividad catalítica. Los productos de reacción se analizaron usando un cromatógrafo de gases (SHIMADZU GC-2014), equipado con una columna BP5 (5% Phenyl/95% Dimethyl Polysiloxane, Length: 30m-ID: 0.25mm- Film: 0.25um) y un detector de ionización a la llama FID, utilizando estándares marca sigma-aldrich de: Bifenilo 99%, ciclohexilbenceno 97%, tetrahidrodibenzotiofeno 97%, dibenzotiofeno 98%, Biciclohexil 99%.

3. RESULTADOS Y DISCUSIONES.

3.1. Fluorescencia de rayos X (FRX).

La composición de los precursores catalíticos, fase Anderson-Evans y γ-Al₂O₃-ZnO se determinó mediante el análisis de FRX. En la tabla 5, se comparan los datos teóricos (nominal) y los experimentales del %p/p de molibdeno, cobalto y óxido de Zinc. Las desviaciones relativas, entre los datos teóricos y experimentales, podrían estar relacionadas con los pasos del procedimiento de síntesis de cada material llevado a cabo por el operario. Sin embargo, las relaciones generales de Mo/Co y Co/(Co+Mo) están cercanos a los valores teóricos propuestos en la síntesis del material como se muestra en la tabla 5.

Tabla 5. Análisis de fluorescencia de rayos X de catalizadores, fase Anderson y
soporte γ-Al2O3-ZnO

Material		Composición Nominal (%p/p)					Composición Experimental %p/p				
	Мо	Co	ZnO	Mo Co	$\frac{\text{Co}}{\text{Co} + \text{Mo}}$	Мо	Со	ZnO	Mo Co	$\frac{\text{Co}}{\text{Co} + \text{Mo}}$	
CoMo ₆	47,81	4,89		6		43,36	3,79		6,4		
γ-Al ₂ O ₃ -ZnO			9,43					13,59			
CoMo/γ-Al ₂ O ₃	20	2,05		6	0,14	24,00	3,54		4,2	0,19	
CoMo/γ- Al₂O₃-ZnO	20	2,05	9,43	6	0,14	23,17	1,97	9,7	7,3	0,12	

3.2. Área específica B.E.T de soporte y catalizadores de Co-Mo.

La comparación de las isotermas de adsorción-desorción de N₂ de los soportes y catalizadores sintetizados en este trabajo son observadas en la figura 8. Según la clasificación de la IUPAC todas las isotermas son de tipo IV típica a sólidos mesoporosos con un lazo de histéresis que nos informa la geometría de los poros por medio del fenómeno condensación capilar que se da alrededor de (P/P₀ > 0,4) [67]. La histéresis de los soportes son de tipo H2 presentando característica de poros en forma de cuello botella, mientras que los catalizadores exhiben una mezcla de histéresis H2/H3, indicando que sus poros son en forma de cuello-botella y rendija [68]. Las distribuciones de tamaños de poros se presentan en la figura 9 para los soportes y catalizadores. Los máximos localizados se ubican principalmente en el rango de mesoporos (2–50 nm), con valores entre 7,3 nm y 2.7 nm de tipo unimodal para γ -Al₂O₃-ZnO y CoMo/ γ -Al₂O₃-ZnO [69]. El orden del diámetro de poros fue: γ -Al₂O₃ > CoMo/ γ -Al₂O₃-ZnO > CoMo/ γ -Al₂O₃-ZnO.

Figura 8. Isotermas de adsorción de N₂ de los soportes y catalizadores: [●] γ-Al₂O₃ [∎] γ-Al₂O₃-ZnO [▲] CoMo/ γ-Al₂O₃-ZnO [♦] CoMo/ γ-Al₂O₃.

Figura 9.Distribución de tamaño de poro de los soportes y precursores: [●] γ-Al₂O₃ [■] γ-Al₂O₃-ZnO [▲] CoMo/γ-Al₂O₃-ZnO [♦] CoMo/γ-Al₂O₃.

Las características texturales de soportes y catalizadores se observan en la tabla 6. El área específica del soporte γ -Al₂O₃ decrece de 207 a 185 m²/g al introducir el ZnO, lo que representa una disminución del 10%, mientras que su volumen mesoporoso es similar en 0,25 cm³/g, además conduce a diámetros de poros de 7,3 a 5,9 y 3,3 nm característico de poros bimodales, Sin embargo, estos cambios estructurales de la alúmina son posible por la introducción de ZnO en su red cristalina (Zn²⁺ (0.075 nm) más grande que Al³⁺ (0.053 nm)). Las muestras que contienen Mo y Co con respecto a sus soportes, disminuye tanto el volumen de poros y el área específica, tal comportamiento puede estar relacionado con la migración de las fases metálicas a los poros de soporte durante el proceso de impregnación y/o síntesis de cada material [27,70]. En general, el orden decreciente del área específica y volumen total en los sólidos fue: γ -Al₂O₃ > γ -Al₂O₃-ZnO > CoMo/ γ -Al₂O₃-ZnO > CoMo/ γ -Al₂O₃.

Material	S_{BET}	Smicro	Dp (nm)	V _{meso}	V _{micro}	V _T	Smicro	V _{micro} /V
	(m ² /g)	(m²/g)		(cm ³ /g)	(cm ³ /g)	(cm ³ /g)	/S _T	т (%)
							(%)	
γ-Al ₂ O ₃	207	21	7,3	0,25	0,008	0,26	10	3,1
γ-Al ₂ O ₃ -ZnO	185	6	5,9 y 3,3	0,25	0,001	0,25	3	0,39
CoMo/y-Al ₂ O ₃	122	16	6,5	0,15	0,007	0,16	13	4,3
CoMo/y-Al ₂ O ₃ -ZnO	155	-	2,7 y 5,9	0,24	-	0,24	-	-

Tabla 6. Área Específica y características de estructuras de poros de los soportesy catalizadores.

 S_{BET} : Área específica, S_{micro} : Área microporosa, V_{meso} : Volumen mesoporoso, V_{micro} : Volumen microporoso, V_T : Volumen total, S_{micro}/S_T : Porcentaje de área microporosa, V_{micro}/V_T : porcentaje de volumen microporoso, D_p : Diámetro de poro.

3.3. Espectroscopia infrarroja con transformada de Fourier (FTIR)

En la figura 10 se observan los espectros FTIR de γ -Al₂O₃, γ -Al₂O₃-ZnO, CoMo/ γ -Al₂O₃-ZnO y CoMo/ γ -Al₂O₃. En todos los FTIR muestra una banda muy amplia situada entre 3600 cm⁻¹ y 3400 cm⁻¹ asignada a vibraciones de estiramiento de O-H, la banda fuerte en 1640 cm⁻¹ y 1400 cm⁻¹ se atribuye a la vibración de deformación del enlace (H-O-H) del agua de cristalización, la intensidad en esa banda para los precursores catalíticos y del POM's aumenta notablemente [71-72,73]. Los picos entre 426 y 613 cm⁻¹ están asociadas con la vibración de estiramiento de los enlaces Zn-O, las cuales no se evidenciaron en los espectros, posible al cambio de átomo central Al³⁺ por Zn²⁺ en la red cristalina de la alúmina y/o a la presencia del polioxomolibdato de cobalto en la superficie del soporte modificado [74,75].

El rango de 1000 cm⁻¹ a 400 cm⁻¹ se presenta diferentes bandas características del polioxometalato Anderson-evans de cobalto, se ha establecido vibraciones simétricas y asimétricas de enlaces dioxo-terminales Mo-O₂t entre 1000-800cm⁻¹,

enlaces tipo puentes Mo-O-Mo (Mo-O_b) entre 750-550 cm⁻¹ y las vibraciones Mo-O(H)-Co (Mo-O_c) menores a 450 cm⁻¹ (figura 10-e), estas bandas en las muestras soportas no se observan (Figura 10-c y 10-d), es debido que se encuentra enmascarada por las bandas de alúmina, o bien el POMs está muy disperso sobre la alúmina, para resaltar la presencia de polioxometalato Anderson-evans de cobalto se observa las bandas vibracionales de 3200cm-1 y 1400cm-1 exhiben la característica del contra-anión de NH₄⁺ [76,77].

Figura 10. Espectro de los soportes y precursores catalíticos: (a) γ -Al₂O₃ (b) γ -Al₂O₃-ZnO (c) CoMo/ γ -Al₂O₃-ZnO (d) CoMo/ γ -Al₂O₃ (e) (NH₄)₃[CoMo₆O₂₄H₆]•7H₂O.

3.4. Espectroscopia Raman.

En la figura 11 se observan los espectros Raman de los catalizadores CoMoS/ γ -Al₂O₃ y CoMoS/ γ -Al₂O₃-ZnO. Los espectros consisten en dos modos Raman a 383 cm⁻¹ se conoce como E_{2g}^1 y a 408 cm⁻¹ es el modo A_{1g} , estos modos activos principales se originan debido a las vibraciones en el plano y fuera del plano de los enlaces S–Mo–S, así estos modos corroboran la formación del sulfuro de molibdeno (MoS₂) en los catalizadores [78,79]. En los espectros de los catalizadores se observa un aumento en la frecuencia de los dos modos de vibración E_{2g}^1 y A_{1g} de CoMoS/ γ -Al₂O₃-ZnO a CoMoS/ γ -Al₂O₃, que suprime parcialmente la vibración de los átomos en el MoS₂, lo que indica una baja interacción de la fase activa con el soporte para CoMoS/ γ -Al₂O₃-ZnO. En esta figura también se puede observar una diferencia de intensidad de los dos modos de vibración de los catalizadores, es así como la presencia de ZnO provocó un aumento de ésta, es decir, mayor tamaño por ende se esperaría mayor número de capas de sulfuro de molibdeno [80].

Figura 11. Espectro Raman de los catalizadores: (a) CoMoS/γ-Al₂O₃ (b) CoMoS/γ-Al₂O₃-ZnO.

3.5. Titulación potenciométrica de n-butilamina.

El análisis de la gráfica informa que al alcanzar el plateu representa el número total de sitios ácidos en el sólido, además el potencial inicial del electrodo (Ei) indica la máxima fuerza ácida de los sitios, clasificados de acuerdo con la siguiente escala: Ei > 100 mV (sitios muy fuertes), 0 < Ei < 100 mV (sitios fuertes), -100 < Ei < 0 (sitios débiles), y Ei < -100 mV (sitios muy débiles) [81,82]. En la tabla 7 se encuentra los valores de los potenciales iniciales de los sólidos y la cantidad de sitios ácidos totales, según la clasificación general, los soportes son ácidos muy débiles donde el potencial γ -Al₂O₃-ZnO > γ -Al₂O₃ probablemnte por la generacion de sitios Lewis, los catalizadores son ácidos débiles pero el potencial de los catalizadores es por la disposición de sitios de la fase activa.

De acuerdo con las curvas de titulación potenciométricas de los sólidos (figura 12 y 13), el catalizador CoMoS/ γ -Al₂O₃ tiene mayor cantidad de sitios respecto a los demás, el orden fue: CoMoS/ γ -Al₂O₃ > γ -Al₂O₃ > CoMoS/ γ -Al₂O₃-ZnO > γ -Al₂O₃-ZnO, además también se observa que la mayoría de la cantidad de sitios se encuentra en el rango de ácidos muy débiles. Teniendo en cuenta los resultados de área específica y la cantidad total de sitios ácidos, se determinó la densidad de sitios ácidos (µeq/m²) obteniendo valores de 17,213 µeq/m² para CoMoS/ γ -Al₂O₃ y 12,580 µeq/m² para CoMoS/ γ -Al₂O₃-ZnO [81,83].

Figura 12.Titulación potenciométrica de n-butilamina para: [•] γ-Al₂O₃ [•] CoMo/γ-Al₂O₃

Figura 13.Titulación potenciométrica de n-butilamina para: [∎] γ-Al₂O₃-ZnO [▲] CoMo/γ-Al₂O₃-ZnO.

Material	SBET	meq n-	µeq/m²	E(mV)	Clasificación
	(m²/g)	but/g			
γ-Al ₂ O ₃	207	2,00	9,613	-170,4	Ac. muy débil
γ-Al ₂ O ₃ -ZnO	185	1,39	7,459	-155,8	Ac muy débil
CoMo/γ-Al ₂ O ₃	122	2,10	17,213	-24.4	Ac. débil
CoMo/y-Al ₂ O ₃ -ZnO	155	1,95	12,580	-42,8	Ac. débil

Tabla 7. Titulación potenciométrica de n-butilamina de soportes y catalizadores.

S_{BET}: Área específica, meq n-but/g: cantidad de sitios, μ eq/m²: densidad de sitios, E(mV): Potencial inicial.

4. EVALUACIÓN CATALÍTICA DE HIDRODESULFURACIÓN DE DIBENZOTIOFENO.

En la figura 14 se observa % conversión de DBT de los catalizadores en función del tiempo, las conversiones de DBT conseguidas con los catalizadores de CoMo siguen el orden CoMo/γ-Al₂O₃-ZnO < CoMo/γ-Al₂O₃, por lo tanto, el catalizador que contiene Zinc demostró tener una menor actividad frente a la desulfuración de DBT (52%), a pesar de que CoMo/γ-Al₂O₃-ZnO tiene una mayor área específica que CoMo/Al₂O₃. Además, la actividad catalítica se relaciona con la cantidad de sitios ácidos por m² como el CoMoS/γ-Al₂O₃-ZnO que tiene menor cantidad de sitios por m² y menor fuerza ácida.

Figura 14. % Conversión de DBT vs tiempo (h) de catalizadores: [•] CoMo/ γ-Al₂O₃ [**■**] CoMo/ γ-Al₂O₃-ZnO.

Las selectividades de desulfuración directa (DDS) e hidrogenación (HYD) de los catalizadores CoMo/γ-Al₂O₃ y CoMo/γ-Al₂O₃-ZnO se definieron por las ecuaciones

(5) y (6), donde BF, CHB, THDBT y BCH representan las concentraciones de Bifenilo, Ciclohexilbenceno, Tetrahidrodibenzotiofeno y Bicliclohexil.

$$DDS_{DBT} = \frac{(BF)}{(BF+CHB+THDBT+BCH)} *100, \text{ ecuación (5)}$$
$$HYD_{DBT} = \frac{(CHB+THDBT+BCH)}{(BF+CHB+THDBT+BCH)} *100, \text{ ecuación (6)}$$

La tabla 8 muestra las conversiones de DBT obtenidas de los dos catalizadores sintetizados a diferentes tiempos de reacción catalítica (0.5, 3 y 6 h), selectividades al 20% de conversión y la relación DDS/HYD. La composición de los productos al 20% de conversión para DBT revela la presencia de BF, THDBT y CHB, así como trazas de DCH, que pueden despreciarse. El producto mayoritario en la HDS del DBT, en ambos catalizadores fue el BF, seguido del CHB y THDBT. El catalizador con ZnO presentó una mayor relación DDS/HYD, lo que permite asumir que la incorporación de ZnO lo hace más desulfurante porque sus sitios son menos ácidos que lo hace menos hidrogenante, lo que estaría relacionado con la formación de vacancias CUS y bordes indispensables en este tipo de reacciones catalíticas (íntimamente relacionadas con la cantidad de sitios ácidos en el catalizador de HDS) [84], lo que demuestra que este catalizador tiene mayor número de pilas y se vincula al modelo estructural Rim-edge (ver análisis Raman).

	% Conversión			% Selectividad					
Catalizador	DBT			(20%)				DDS/HYD	
	0,5h	3h	6h	_	BF	CHB	BCH	THDBT	
CoMoS/γ-Al ₂ O ₃	32	72	82		16,36	2,07	1,03	0,40	4,67
CoMoS/y-Al ₂ O ₃ -ZnO	19	39	52		17,73	1,84	0,07	0,39	7,70

Tabla 8. % conversión de HDS de DBT y selectividad a productos al 20% de
conversión de catalizadores.

Una forma más exacta para confirmar lo anterior, es comparar con la relación de las constantes de rapidez aparentes de las rutas de desulfuración directa e hidrogenación (k_1^*/k_2^*) como se muestra en la tabla 8. Para los catalizadores sintetizados, se hizo un ajuste entre los puntos experimentales y teóricos (figura 15) utilizando el modelo cinético de H. Farag (las ecuaciones (1), (2), (3) y (4)), que permite hallar las constantes de velocidad implicadas en la HDS del DBT [36-38]. Las líneas punteadas en esta figura correspondes a los datos teóricos y los puntos a los datos experimentales. Las constantes de velocidad aparentes son menores para el catalizador, CoMoS/Al₂O₃-ZnO, dando un valor más pequeño en la constante de velocidad global de pseudo primer orden ($k_{HDS} = 0,02279x10^{-5}$ L/m²•s); que es 2,3 veces menos activos que CoMoS/Al₂O₃. No obstante, la relación de k_1^*/k_2^* del catalizador CoMoS/Al₂O₃-ZnO es más alto, lo que significa que la adición de ZnO al soporte de alúmina causó un aumento en la selectividad hacía la ruta de DDS de DBT como se mencionó antes [85,86].

Figura 15. Estudio cinético del DBT, ajustando datos experimentales con los teóricos(a) para los catalizadores CoMoS/γ-Al₂O₃, (b) CoMoS/γ-Al₂O₃-ZnO, (●) BF, (-----) BF, (■) THDBT, (-----) THDBT, (▲) CHB, (-----) CHB.

	Constantes de velocidad L/m ² •s x 10 ⁻⁵								
catalizador	Khds	k1*	k2 [*]	k³*	k4*	k1*/k2*			
CoMoS/γ-Al ₂ O ₃	0,05262	0,04539	0,007262	~0	1,121	6,25			
CoMoS/y-Al ₂ O ₃ -ZnO	0,02279	0,01712	0,002141	~0	1,116	8,00			

Tabla 9. Constantes de velocidad aparente de los catalizadores para la reacciónde HDS de DBT.

 \mathbf{k}_{HDS} = Constante de velocidad pseudo primer orden de HDS, $k_{HDS} = k_1K_1 + k_2K_2$, k_1 , k_2 , k_3 y k_4 son constante de velocidad aparente. \mathbf{k}_n = es la constante de velocidad intrínseca y \mathbf{K}_n = es constante de velocidad de equilibrio de adsorción de cada compuesto.

5. CONCLUSIONES

- El área específica y volumen de poros para los catalizadores CoMo/γ-Al₂O₃-ZnO fueron mayores que los de CoMo/γ-Al₂O₃, de 155 a 122 m²/g y 0,24 a 0,16 cm³/g, además la inclusión de ZnO en la matriz de la alúmina provoca la generación de materiales bimodales con poros entre 2,7 y 5,9 nm.
- Los análisis de los FTIR mostraron las señales Mo-O, Mo-O-Mo, Mo-O-Co y N-H del grupo amino característicos de la fase Anderson-evans (1100– 400 cm⁻¹), y bandas asociadas a la γ-alúmina.
- El análisis de Raman de los catalizadores presentaron los dos modos principales activos E¹_{2g} y el A_{1g} indicando la formación del sulfuro de molibdeno (MoS₂). Por el aumento de las frecuencias, CoMo/γ-Al₂O₃-ZnO presentó una baja interacción de la fase activa con el soporte.
- La densidad y fuerza de los sitios ácidos para el catalizador CoMo/γ-Al₂O₃ fue mayor que CoMo/γ-Al₂O₃-ZnO, de 17,213 a 12,580 μeq/m² y su fuerza ácida se encontró en el rango de ácidos débiles (-24.4 mV vs -42,8 mV, respectivamente).
- 5. Las actividades catalíticas en HDS fueron mayores para CoMo/γ-Al₂O₃ de 82% y 52% para CoMo/γ-Al₂O₃-ZnO, por la mayor presencia de sitios ácidos en el catalizador. La presencia de ZnO aumenta la proporción de Bifenilo tomando la ruta DDS por la fuerza de los sitios, aunque tuviera menos sitios ácidos.
- El estudio cinético indico que CoMo/γ-Al₂O₃ es 2,3 veces más activo que CoMo/γ-Al₂O₃-ZnO, y corroboró al aumento de la formación de Bifenilo (k₁^{*}/k₂^{*} = 8,00)

6. RECOMENDACIONES.

- 1. Hacer HRTEM a los catalizadores para conocer la longitud promedio, apilamiento y dispersión de los cristales de MoS₂.
- 2. Reducción a temperatura programada (TPR) para corroborar la interacción fase activa soporte en presencia de ZnO.
- 3. Hacer estudio TPD de piridina para determinar la naturaleza de ácidos de Brownsted y Lewis.

7. REFERENCIAS.

[1] Choi, K.H.; Sano, Y.; Korail, Y.; Mochida, S. An approach to the deep hydrodesulfurization of light cycle oil. Appl. Catal. B: Environmental. 53, 2004, 275-283.

[2] Li, X.; Han, D.; Xu, Y.; Liu, X.; Yan, Z. Bimodal mesoporous γ -Al₂O₃: A promising support for CoMo-based catalyst in hydrodesulfurization of 4,6-DMDBT. Mater. Lett. 65, 2011, 1765-1767.

[3] Marafi, A.; H. Albazzaz, H.; Rana, M.S. Hydroprocessing of heavy residual oil: Opportunities and challenges. Catal. Today. 329, 2019, 125-134.

[4] Ferreira, C.; Guibard, I.; Lemos, F.; Fayolle, T.M. Hydrodesulfurization and hydrodemetallization of different origin vacuum residues: New modeling approach. Fuel.129, 2014, 267-277.

[5] Ho, T.C.; McConnachie, J.M. Ultra-deep hydrodesulfurization on MoS₂ and Co_{0.1}MoS₂: Intrinsic vs. environmental factors J. Catal. 277, 2011, 117-122.

[6] ley N° 1205 de la República de Colombia, Bogotá, Colombia 14 de julio de 2008.

[7] Choi. K.; Sano. Y.; Yozo Korai. Y.; Mochida I. Applied Catalysis B: Environmental, 53, 2004, 275-283.

[8] Altamirano, E.; de los Reyes, J.A.; Murrieta, F.; Vrinat, M. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over Co(Ni)MoS₂ catalysts supported on alumina: Effect of gallium as an additive. Catal. Today. 133–135, 2008, 292–298

[9] Rayo, P.; Ramírez, J.; Mancera, P.T.; Marroquín, G.; Maity, S.K.; Ancheyta. J. Hydrodesulfurization and hydrocracking of Maya crude with P-modified NiMo/Al₂O₃ catalysts. Fuel. 100, 2012, 34-42.

[10] Rana, M.S.; Capitaine. E.MR.; Leyva. C.; Ancheyta. J.S. Effect of catalyst preparation and support composition on hydrodesulfurization of dibenzothiophene and Maya crude oil. Fuel. 86, 2007, 1254-1262

[11] Ancheyta, J.S.; Rana, M.S.; Furimsky, E. Hydroprocessing of heavy petroleum feeds: Tutorial Catal. Today. 109, 2005, 3–15

[12] Sánchez, F.M.; Sánchez, G.R; Ancheyta, J.S.; Marroquin, G. Comparison of correlations based on API gravity for predicting viscosity of crude oils. Fuel. 138, 2014, 193-199.

[13] Pashigreva, A.V.; Klimov, O.V.; Bukhtiyarova, G.A.; Kochubey, D.I.; Prosvirin, I.P.; Chesalov, Y.A.; Zaikovskii, V.I.; Noskov, A.S. High-active hydrotreating catalysts for heavy petroleum feeds: Intentional synthesis of CoMo sulfide particles with optimal localization on the support surface. Catal. Today 150 2010, 164–170

[14] Speight, J.G.; Shafik, N. Introduction to Petroleum Biotechnology. United States. Eds.; Elsevier, 2017. Cap 1, pp 1-39

[15] Correa, R.P.; de Souza, C.F. Crude oil spectral signatures and empirical models to derive API gravity. Fuel. 237, 2019, 1119-1131.

[16] Viswanathan, B. Energy Sources: Fundamentals of Chemical Conversion Processes and Applications. India. Eds.; Elsevier, 2016. Cap 2, pp 29-57.

[17] Jafarinejad, S. Petroleum Waste Treatment and Pollution Control. Iran. Eds.; Elsevier, 2017. Cap 1, pp 1-17.

[18] Alvarez, A.; Castañeda, L.C.; Ancheyta, J. On the application of petroleum feedstock modeling techniques for developing molecule-based models of hydrocarbon conversion processes. Catal. Today. 220-222, 2014, 198-207.

[19] Verşan Kök, M., 2015. Introduction to Petroleum Engineering, PETE110, Undergraduate Course Code 5660110. Middle East Technical University, Turkey.

[20] Karroua, M. Centeno, A.; Matralis, H.K.; Grange, P.; Delmon, B. Synergy in hydrodesulphurization and hydrogenation on mechanical mixtures of cobalt sulphide on carbon and MoS₂ on alumina. Appl. Catal. 51, 1989, L21-L26

[21] Hernández P. Síntesis y evaluación de catalizadores soportados en óxidos mixtos en la hidrodesulfuración de tiofeno. Tesis de pregrado. Departamento de ingeniería química e industrias extractivas. Instituto Politécnico Nacional, México, (2008).

[22] Bandyopadhyay, R.; Upadhyayula, S. Thermodynamic analysis of diesel hydrotreating reactions. Fuel. 214, 2018, 314-321

[23] Pernaletea, C.G.; Van Baten, J.; Urbina. J.C.; Arévaloa, J.F. A molecular reconstruction feed characterization and CAPE OPEN implementation strategy to develop a tool for modeling HDT reactors for light petroleum cuts. Comput. Aided Chem. Eng. 37, 2015, 359-364

[24] Nie, H.; Li, H.; Yang, Q.; Li, D. Effect of structure and stability of active phase on catalytic performance of hydrotreating catalysts. Catal. Today. 316, 2018, 13-20.

[25] Bhran, A.A.; Shoaib, A.M.; Umana, B. Optimization of crude oil hydrotreating process as a function of operating conditions: Application of response surface methodology. Comput. Chem. Eng. 89, 2016, 158-165.

[26] Huang. T.; Xu. J.; Fan Y. Effects of concentration and microstructure of active phases on the selective hydrodesulfurization performance of sulfided CoMo/Al₂O₃ catalysts. Appl. Catal. B: Environmental. 220, 2018, 42-56.

[27] Sampieri, A.; Pronier, S.; Brunet, S.; Carrier, X.; Louis, C.; Blanchard, J.; Breysse, M. Formation of heteropolymolybdates during the preparation of Mo and NiMo HDS catalysts supported on SBA-15: Influence on the dispersion of the active phase and on the HDS activity. Microporous Mesoporous Mater. 2010, 130, 130–141.

[28] Liu, B.; Liu, L.; Chai, Y.; Zhao, J.; Li, Y.; Liu, D.; Liu, Y.; Liu, C. Effect of sulfiding conditions on the hydrodesulfurization performance of the ex-situ presulfided CoMoS/γ-Al₂O₃ catalysts. Fuel. 234, 2018, 1144-1153.

[29] Zhang, C.; Brorson, M.; Li, P.; Liu, X.; Liu, T.; Jiang, Z.; Li, C. CoMo/Al₂O₃ catalysts prepared by tailoring the surface properties of alumina for highly selective hydrodesulfurization of FCC gasoline. Appl. Catal. A: General 570, 2019, 84-95.

[30] Li, M.; Li, H.; Jiang, F.; Chu, Y.; Nie, H. The relation between morphologyof(Co) MoS₂ phases and selective hydrodesulfurization for CoMo catalysts. Catal. Today 149, 2010, Pages 35-39.

[31] Yu, Q.; Zhang, L.; Guo, R.; Sun, J.; Fu, W.; Tang, T.; Tang. T. Catalytic performance of CoMo catalysts supported on mesoporous ZSM-5 zeolite-alumina composites in the hydrodesulfurization of 4, 6-dimethyldibenzothiophene. Fuel Process. Technol. 159, 2017, 76-87.

[32] Naboulsi, I.; Lebeau, B.; Linares, C.A.; Mallet, M.; Michelin, L.; Bonne, M.; Carteret, C.; Blin, J.L.; Brunet, S. Selective direct desulfurization way (DDS) with CoMoS supported over mesostructured titania for the deep hydrodesulfurization of 4,6-dimethydibenzothiophene. Appl. Catal., A: General. 563, 2018, 91-97.

[33] de Mello, M.D.; Braggio, F.; Magalhães, B.; Zotin. J.; da Silva, M.P. Kinetic modeling of deep hydrodesulfurization of dibenzothiophenes on NiMo/alumina catalysts modified by phosphorus Fuel Process. Technol. 177, 2018, 66-74.

[34] Espinoza, Y.; Cruz, J.; Paraguay, F.; Del Valle, M.; Alonso, G.; Fuentes, S.; Romero, R. CoMoW sulfide nanocatalysts for the HDS of DBT from novel ammonium and alkyltrimethylammonium-thiomolybdate-thiotungstate-cobaltate (II) precursors. Appl. Catal., A: General. 486, 2014, 62–68.

[35] Shafi, R.; Hutchings, G.J. Hydrodesulfurization of hindered dibenzothiophenes: an overview Catal. Today. 59, 2000, 423-442.

[36] Méndez, F.J.; López, O.F.; Bokhimi. X.; Casados, D.S.; Alarcón, L.E.; Klimova.
T. Dibenzothiophene hydrodesulfurization with NiMo and CoMo catalysts supported on niobium-modified MCM-4.1 Appl. Catal., B: Environmental. 219, 2017, 479-491.

[37] Farag. H.; Kinetic analysis of the hydrodesulfurization of dibenzothiophene: approach solution to the reaction network. Energy Fuels. 20, 2006, 1815–1821.

[38] Farag. H.; Hydrodesulfurization of dibenzothiophene and 4, 6dimethyldibenzothiophene over NiMo and CoMo sulfide catalysts: Kinetic modeling approach for estimating selectivity. J. Colloid Interface Sci. 348, 2010, 219–226.

[39] Solmanov, P.S.; Maximov, N.M.; Tomina, N.N.; Pimerzin, A.A. Morphology and composition of NiMoW/P-Al₂O₃ systems based on the modified support with varied P_2O_5 content. Mendeleev Commun. 28, 2018, 562-564.

[40] Palcheva, R.; Kaluža L.; Spojakina A.; Jirátová. K.; Tyuliev. K. Chinese journal of catalysis 33, 2012, 952–961.

[41] Polo, A. (2015) Influencia del cerio en la hidrodesulfuración de tiofeno sobre heteropolioxomolibdatos de níquel tipo Anderson. (Tesis de pregrado) Universidad del Atlántico, Colombia.

[42] Romero, M. (2015) síntesis y caracterización de polioxometalatos tipo anderson de Fe-Mo, Co-Mo y Ni-Mo soportados sobre zeolitas β para hidrodesulfuración de tiofeno (Tesis de pregrado). Universidad del atlántico, Colombia.

[43] Riad, M.; Mikhail, S. Effect of support modification on the characterization and catalytic activity of Mo/Al₂O₃ catalysts. J. Energy Chem., 24, 2015, 520-528.

[44] Han, J.K.; Jia, L.T.; Hou, B.; Li, D.B.; Liu. Y.; Liu. Y.C. Catalytic properties of CoAl₂O₄/Al₂O₃ supported cobalt catalysts for Fischer-Tropsch synthesis. J. Fuel Chem. and Technol. 43, 2015, 846-851.

[45] Garrido. I.V.; Benítez. A.L.; Berhault. G.; Lara. A.G. Effect of support on the acidity of NiMo/Al₂O₃-MgO and NiMo/TiO₂-Al₂O₃ catalysts and on the resulting competitive hydrodesulfurization/hydrodenitrogenation reactions. Fuel. 236, 2019, 55-64.

[46] Topsoe, H.; Clausen, B.S.; Massoth, F.E.; Anderson, J.R.; Boudart, M. Catalysis Science and Technology, vol. 11, Springer, New York, 1996.

[47] Okamoto, Y.; Breysse, M.; Dhar, GM.; Song, CS. Effect of support in hydrotreating catalysis for ultra clean fuels. Catal. today. 86, 2003, 1-3.

[48] Breysse, M.; Afanasiev, P.; Greantet, C.; Vrinat, M. Overview of support effects in hydrotreating catalysts catal. today. 86, 2003, 5-16.

[49] Ramirez, J.; Sánchez, F.S. Support effects in the hydrotreatment of model molecules. Catal. today 130, 2008, 267-271.

[50] Fierro, JL, Lopez, A.; Grange, P.; Delmon, B.; In: Proceeding of the 8th international congress on catalysis, 2, 1984, 363.

[51] Thomas, H., Cáceres, C., Blanco, M., Fierro, J. L. G., & Agudo, A. L. Surface distribution and heteroatom removal activity of equilibrium adsorption prepared, doubly promoted (Zn,Co)Mo/Al₂O₃ catalysts. J. Chem. Soc., Faraday trans. 90 (1994) 2125–2131.

[52] Chen, Y., Wang, L., Zhang, Y., Liu, T., Liu, X., Jiang, Z., y Li, C. A new multimetallic bulk catalyst with high hydrodesulfurization activity of 4, 6–DMDBT prepared using layered hydroxide salts as structural templates. Appl. Catal A: General. 474, 2014, 69–77. [53] Chen, Y., Wang, L., Liu, X., Liu, T., Huang, B., Li, P. Li, C. Hydrodesulfurization of 4, 6-DMDBT on multi-metallic bulk catalyst NiAlZnMoW: Effect of Zn. Appl. Catal. A: General, 504, 2015, 319–327.

[54] Liu, H.; Liu, C.; Yin, C.; Chai, Y.; Li, Y.; Liu, D.; Li, X. Preparation of highly active unsupported nickel–zinc–molybdenum catalysts for the hydrodesulfurization of dibenzothiophene. Appl. Catal. B: Environ, 174-175 2015, 264–276.

[55] Xu, C.; Tang, S.-F.; Sun, X., Sun, Y.; Li, G.; Qi, J.; Li, X. Investigation on the cleavage of β -O-4 linkage in dimeric lignin model compound over nickel catalysts supported on ZnO-Al₂O₃ composite oxides with varying Zn/Al ratios. Catal. Today, 298 2017, 89–98.

[56] Liu, Y.; Pan, Y.; Wang, H.; Liu, Y.; & Liu, C. Ordered mesoporous Cu-ZnO-Al₂O₃ adsorbents for reactive adsorption desulfurization with enhanced sulfur saturation capacity. Chinese J. Catal. 39, 2018, 1543–1551.

[57] Mattes, R. Heteropoly and Isopolyoxometallates, Springer-Verlag, Berlin, 1983.

[58] Cabello, C.I.; Muñoz, M.; Botto, I.L.; Payen, E. The role of Rh on a substituted AI Anderson heteropolymolybdate: Thermal and hydrotreating catalytic behavior. Thermochim. Acta. 447, 2006, 22-29.

[59] Kitazumi, I.; Nakashima, Y.; Himeno, S. Capillary electrophoretic determination of Ga (III) based on the formation of a heteropolyoxomolybdate complex. J. Chromatogr. A. 993, 2003, 211-215.

[60] Kogan, V.M.; Nikulshin, P.A. On the dynamic model of promoted molybdenum sulfide catalysts Catal. Today. 149, 2010, 224–231.

[61] De la Rosa, M.; Berhault, G.; Mehta, A.; Russell, R. structural studies of catalycally stabilized industrial hydrotreting catalysts. [Online] Available from: https://www-ssrl.slac.stanford.edu/research/highlights_archive/mos2.html.

[62] Daage, M. Structure-Function Relations in Molybdenum Sulfide Catalysts: The "Rim-Edge" Model. J. Catal. 149,1994, 414–427.

[63] Stanislaus, A.; Marafi, A.; Rana, M. Recent advances in the science and technology of ultra-low sulfur diesel (ULSD) production. Catal. Today. 153, 2010, 1-68.

[64] Pettiti, I.; Botto, L.; Cabello, C.I.; Colonna, S.; Faticanti, M.; Minelli, G.; Porta,
P.; Thomas, H. Anderson-type heteropolyoxomolybdates in catalysis: 2. EXAFS study on γ-Al₂O₃-supported Mo, Co and Ni sulfided phases as HDS catalysts. Appl. Catal. A: General. 220, 2001, 113-121.

[65] Lai, W.; Pang, L.; Zheng, J.; Li, J.; Wu, Z.; Fang, W., Jia, L. Efficiente one pot synthesis of mesoporous NiMo-Al₂O₃ catalystd for dibenzothiophene hydrodesulfurization. Fuel Process. Technol. 110, 2013, 8-16.

[66] Cabello, C.; Botto, I.; Thomas, H. Anderson type heteropolyoxomolybdates in catalysis: 1. (NH₄)₃[CoMo₆O₂₄H₆]·7H₂O as alternative of CoMo/Al₂O₃ hydrotreating catalysts Appl. Catal. A: General. 197, 2000, 79-86.

[67] Sing, K.; Everett, D.; Haul, R., Moscou, L.; Pierotti, R.; Rouquérol, J., Siemieniewska, T. REPORTING PHYSISORPTION DATA FOR GAS/SOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity., Pure Appl. Chem. 57 (1985) 603–619.

[68] Zhang, Y.; Shao, D.; Yan, J.; Jia, X.; Li, Y.; Yu, P.; Zhang, T. The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China. J. Nat. Gas Geosci. 1, 2016. 213–220.

[69] Wang, D.; Ni, W.; Pang, H.; Lu, Q.; Huang, Z.; & Zhao, J. Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors. Electrochim. Acta, 55, 2010, 6830–6835.

[70] Julio, J. (2015) síntesis y caracterización de carburos a base del heterepolioxón tipo Anderson (NH₄)₄[NiMo_{6-x}W_xO₂₄H₆].5H₂O soportados sobre

alumina para la hidrodesulfuración de tiofeno (Tesis de pregrado). Universidad del atlántico, Colombia.

[71] Badoga, S.; Sharma, R.; Dalai, A.; Adjaye, J. Hydrotreating of Heavy Gas Oil on Mesoporous Mixed Metal Oxides (M–Al₂O₃, M = TiO₂, ZrO₂, SnO₂) Supported NiMo Catalysts: Influence of Surface Acidity. Am. Chem. Soc. 53, 2014, 18729–18739.

[72] Kirszensztejn, P.; Szymkowiak, A. thermal analysis of binary system Al₂O₃– SnO₂ obtained by sol-gel technique. J. Therm. Anal. Calorim. 2005, 81, 35-39.

[73] Shen, S.C.; Ng, W. K.; Zhong, Z.Y.; Dong, Y.C.; Chia, L.; Tan, R. B. H. Solid-Based Hydrothermal Synthesis and Characterization of Alumina Nanofibers with Controllable Aspect Ratios. J. Am. Ceram. Soc., 92, 2009,1311–1316.

[74] Lei, C.; Pi, M.; Xu, D.; Jiang, C.; Cheng, B. Fabrication of hierarchical porous ZnO-Al₂O₃ microspheres with enhanced adsorption performance Appl. Surf. Sci. 426, 2017, 360–368.

[75] Aydoghmish, S. M.; Hassanzadeh, S. A.; Saffar, A. Facile synthesis and investigation of NiO–ZnO–Ag nanocomposites as efficient photocatalysts for degradation of methylene blue dye. Ceram. Int. 45, 2019, 14394-14942.

[76] Martin, C.; Lamonier, C.; Fournier, M.; Mentre, O.; Harle, V.; Guillaume, D.; Payen, E. Preparation and Characterization of 6-Molybdocobaltate and 6-Molybdoaluminate Cobalt Salts. Evidence of a New Heteropolymolybdate Structure. Inorg. Chem. 43, 2004, 4636–4644.

[77] Mercedes, M.; (2010). Diseño, síntesis y aplicación de catalizadores a base de polioxometalatos soportados en sistemas oxídicos de natural y sintético. (Tesis doctoral) Universidad nacional de la plata, Argentina.

[78] Chakraborti, A.; Patel, A.S. Kanaujia, P.K.; Nath, P.; Prakash, G.V.; Sanyal,D. Resonance Raman scattering and initio calculation of electron energy loss spectra of MoS₂ nanosheets. Phys. Lett A. 2016, 380 4057-4061.

[79] Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS₂. ACS Nano, 4, 2010, 2695–2700.

[80] Da Silva Neto, A. V.; Leite, E. R.; da Silva, V. T.; Zotin, J. L.; & Urquieta, E. A. NiMoS HDS catalysts – The effect of the Ti and Zr incorporation into the silica support and of the catalyst preparation methodology on the orientation and activity of the formed MoS₂ slabs. Appl. Catal. A: General 2016, 528, 74–85.

[81] Cid. R.; Pecchi. R. potentiometric method for determining the number and relative strength of acid sites in colored catalysts Appl. Catal. 1985, 14, 15-21.

[82] Pizzio. L.; Blanco, M.; Isoamyl acetate production catalyzed by H₃PW₁₂O₄₀ on their partially substituted Cs or K salts, Appl. Catal. A: Gen. 2003, 255, 265–277.

[83] Costa, B.D.; Legnoverde M.; Lago, C., Decolatti, H.; Querini, C. Sulfonic functionalized SBA-15 catalysts in the gas phase glycerol dehydration. Thermal stability and catalyst deactivation, Micro. Mesop. Mater. 230, 2016, 66-75.

[84] Macías, G.; Ramírez, E.; Alejandre, A. HDS of 4,6-DMDBT over NiW/Al-SBA15 catalysts. Catal. Today. 148, 2009, 36-41.

[85] Dorneles, M.; de Almeida, F.; da Costa, B.; Zotin, J.L.; da Silva, M. Kinetic modeling of deep hydrodesulfurization of dibenzothiophenes on NiMo/alumina catalysts modified by phosphorus. Fuel Process. Technol. 177, 2018,66–74.

[86] Méndez, F.J.; Franco, O.E.; Bokhimi, X.; Solís, D.A.; Escobar, L.; Klimova, T.
E. Dibenzothiophene hydrodesulfurization with NiMo and CoMo catalysts supported on niobium-modified MCM-41. Appl. Catal. B: Environ. 219, 2017, 479–491.

ANEXO A. CALCULOS PARA SINTESIS DE FASE ANDERSON-EVANS DE COBALTO.

DATOS.

x = Mo, y = Co, z = 1g soporte, $MM_{Mo} = 95,94$ g/mol, $MM_{Co} = 58,933$ g/mol.

relación molar
$$\frac{Mo}{Co} = 6$$
 ecuación 1.
 $n = \frac{W}{MM}$ ecuación 2.
 $\frac{x}{x + y + z} = 0,15$ ecuación 3.

La ecuación (2) se sustituye en (1) y se despeja masa de cobalto.

$$w_{Co} = \frac{w_{Mo} * MM_{Co}}{6 * MM_{Mo}}$$
 ecuación 4.

La ecuación (4) se sustituye en ecuación (2) en terminos de X.

$$\frac{x}{x + \left(\frac{x * MM_{Co}}{6 * MM_{Mo}}\right) + 1} = 0,15 \text{ ecuación 5}$$

Se determina la cantidad en gramos de molibdeno en ecuación 5.

$$x = \frac{0,15}{0,834} = 0,179$$
 Mo

Los gramos de cobalto se determinan en ecuación 4.

$$w_{Co} = \frac{0,179 * 58,933}{6 * 95,94} = 0,0183$$
g Co

Cálculos estequiométricos para calcular la cantidad de fase Anderson- Evans.

$$0,179$$
gMo * $\frac{1$ mol Mo}{95,94gMo * $\frac{1$ mol POM's}{6mol Mo * $\frac{1204,94$ g POM's}{1mol POM's} = 0,374gPOM's

Obtención de cantidades de las sales precursoras.

$$0,374\text{gPOM's} * \frac{1\text{mol POM's}}{1204,94\text{g POM's}} * \frac{6\text{ mol Mo}}{1\text{ mol POM's}} * \frac{1204,94\text{g POM's}}{7\text{ mol HAM}} * \frac{1235,86\text{g HMA}}{7\text{ mol HAM}}$$
$$= 0,3218\text{g HMA}.$$
$$0,374\text{gPOM's} * \frac{1\text{mol POM's}}{1204,94\text{g POM's}} * \frac{1\text{ mol Co}}{1\text{ mol POM's}} * \frac{290,933\text{g Co}(\text{NO}_3)_2 * 6\text{H}_2\text{O}}{1\text{ mol Co}(\text{NO}_3)_2 * 6\text{H}_2\text{O}}$$

$$= 0,090 \text{gCo}(\text{NO}_3)_2 * 6 \text{H}_2 \text{O}$$
.

ANEXO B. CALCULOS DE TITULACIÓN POTENCIOMETRICA DE N-BUTILAMINA.

SOLUCIÓN DE N-BUTILAMINA EN ACETONITRILO (0,1N)

Volumen de n-butilamina para solución de 0,1 N.

$$\frac{0,1meq-g}{mL\,sln} * \frac{1\text{mmol } n - \text{but}}{1\text{meq} - \text{g}} * \frac{1\text{mol } n - \text{but}}{1000\text{mmol } n - \text{but}} * \frac{73,14\text{g} n - \text{but}}{1\text{ mol } n - \text{but}} * 250\text{mL} * \frac{1\text{mL}}{0,74\text{g}} \\ * \frac{1000\mu\text{L}}{1\text{mL}} = 2470,94 \,\mu\text{L}.$$

DENSIDAD DE SITIOS Al₂O₃

$$\frac{1,99 meq}{g} * \frac{1g}{207m^2} * \frac{1000\mu eq}{m^2} = 9,61 \frac{\mu eq}{m^2}$$

DENSIDAD DE SITIOS Al₂O₃-ZnO

$$\frac{1,38 meq}{g} * \frac{1g}{185m^2} * \frac{1000\mu eq}{m^2} = 7,45 \frac{\mu eq}{m^2}$$

DENSIDAD DE SITIOS CoMoS/Al₂O₃

$$\frac{2,10 \ meq}{g} * \frac{1g}{122m^2} * \frac{1000\mu eq}{m^2} = 17,21 \ \frac{\mu eq}{m^2}$$

DENSIDAD DE SITIOS CoMoS/Al₂O₃-ZnO.

$$\frac{1,95 meq}{g} * \frac{1g}{155m^2} * \frac{1000\mu eq}{m^2} = 12,58 \frac{\mu eq}{m^2}$$

ANEXO C. CONVERSIÓN DE LAS CONSTANTES CINETICAS DE (1/h) A UNIDADES (L/m²·s).

A) Datos de CoMoS/ γ -Al₂O₃-ZnO.

Volumen de solución: 0,1L

Masa de catalizador: 0,2511 g

Área específica: 155 m²/g

$$k_{HDS} = \frac{0,2752}{h} * \frac{1h}{60min} * \frac{1min}{60s} * \frac{0,1L}{0,2511g} * \frac{1g}{155m^2} * 10^5 = 0,02279 \frac{L}{m^2 \cdot s}$$

$$k_1^* = \frac{0.24}{h} * \frac{1h}{60min} * \frac{1min}{60s} * \frac{0.1L}{0.2511g} * \frac{1g}{155m^2} * 10^5 = 0.01712 \frac{L}{m^2} \cdot s$$

$$k_2^* = \frac{0.03}{h} * \frac{1h}{60min} * \frac{1min}{60s} * \frac{0.1L}{0.2511g} * \frac{1g}{155m^2} * 10^5 = 0.002141 \frac{L}{m^2 \cdot s}$$

$$k_4^* = \frac{15,65}{h} * \frac{1h}{60min} * \frac{1min}{60s} * \frac{0,1L}{0,2511g} * \frac{1g}{155m^2} * 10^5 = 1,116^{\frac{L}{m^2}} \cdot s$$

B) Datos de CoMoS/γ-Al₂O₃.

Volumen de solución: 0,1L

Masa de catalizador: 0,2508 g

Área específica:122 m²/g

$$k_{HDS} = \frac{0.58021}{h} * \frac{1h}{60min} * \frac{1min}{60s} * \frac{0.1L}{0.2508g} * \frac{1g}{122m^2} * 10^5 = 0.05262 \frac{L}{m^2} \cdot s$$

$$k_1^* = \frac{0.50}{h} * \frac{1h}{60min} * \frac{1min}{60s} * \frac{0.1L}{0.2508g} * \frac{1g}{122m^2} * 10^5 = 0.04539 \frac{L}{m^2 \cdot s}$$

$$k_2^* = \frac{0.08}{h} * \frac{1h}{60min} * \frac{1min}{60s} * \frac{0.1L}{0.2508g} * \frac{1g}{122m^2} * 10^5 = 0.007262 \frac{L}{m^2} \cdot s$$

$$k_4^* = \frac{12,35}{h} * \frac{1h}{60min} * \frac{1min}{60s} * \frac{0,1L}{0,2508g} * \frac{1g}{122m^2} * 10^5 = 1,121 \frac{L}{m^2 \cdot s}$$