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Abstract

We examine the existence and stability of nonlinear discrete vortex solitons in a square lattice

when the standard discrete Laplacian is replaced by a fractional version. This creates a new,

effective site-energy term, and a coupling among sites, whose range depends on the value of the

fractional exponent α, becoming effectively long-range at small α values. At long-distance, it can

be shown that this coupling decreases faster than exponential: ∼ exp(−|n|)/
√
|n|. In general, we

observe that the stability domain of the discrete vortex solitons is extended to lower power levels, as

the α coefficient diminishes, independently of their topological charge and/or pattern distribution.

I. INTRODUCTION

Vortices are objects characterized by a spatially-localized distribution of field intensities,

together with a nontrivial phase distribution. This phase circulates around a singular point,

or central core, changing by 2πS times in each closed loop around it (where S is an integer

number). Integer S is known as the topological charge of the vortex. The sign of S deter-

mines the direction of power flow. In optics, this type of solution is also known as a vortex

beam and has arisen considerable interest given their potential technological applications.

Optical vortices have been envisioned as a mean to codify information using their topological

charge value in classical [1] and quantum [2] regimes. Also, a stable vortex is capable of

delivering its orbital angular momentum (OAM) to a nearby object, given way to one of

its most remarkable applications: optical tweezers in biophotonics, where they are useful

due to their ability to influence the motion of living cells, virus, and molecules [3–5]. Other

applications can be found in optical systems communications [6] and spintronics [7].

A particular domain where discrete vortex solitons can be found, is in the discrete non-

linear Schrödinger (DNLS) equation [8–10], whose dimensionless form can be written as:

i
dCn

dt
+
∑
m

Cm + χ|Cn|2Cn = 0, (1)

where Cn is, for instance, the amplitude of an optical or electronic field, χ is the nonlinear

coefficient, and the sum is usually restricted to nearest-neighbor lattice sites. The DNLS

equation has proven useful in describing a variety of phenomena in nonlinear physics, such
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as the transversal propagation of light in waveguide arrays [11–13], propagation of exci-

tations in a deformable medium [14, 15], self-focusing and collapse of Langmuir waves in

plasma physics [16, 17], dynamics of Bose-Einstein condensates inside coupled magneto-

optical traps [18, 19], and description of rogue waves in the ocean [19] among others. Its

main features include the existence of localized nonlinear solutions in 1D and 2D, usually

referred to as discrete solitons, with families of stable and unstable states, the existence of a

selftrapping transition [20, 21] of an initially localized excitation, and a degree of excitation

mobility in 1D [13]. For the DNLS equation, the existence and observation of discrete vor-

tex solitons in Eq. (1) for several lattices have been reported in several works. For a square

geometry and Kerr nonlinearity [Eq. (1)] it was found that the discrete vortex is stable when

χ is larger than a critical value [22–24]. For saturable nonlinearity, discrete vortices have

been experimentally observed in a square lattice [25]. They have also been studied in a

nonlinear anisotropic Lieb lattice, which possesses a flat band [26]. For a hexagonal lattice

in a self-focusing photorefractive crystal, vortices with S = 1 have been found but proven

unstable, while for S = 2 a range of stability can be found [27–29]. Discrete vortices living

at the boundary between a square and hexagonal lattice with photorefractive nonlinearity,

have also been found [30].

Another field with substantial recent interest is that of fractional calculus. Its origin dates

back to the firsts observations that the usual integer-order derivative could be exended to

a fractional-order derivative, that is, (dn/dxn) → (dα/dxα), for real α, which is known

as the fractional exponent. The field has a long history dating back to letters exchanged

between L’Hopital and Leibnitz, followed by later contributions by Euler, Laplace, Riemann,

Liouville, and Caputo, to name some. Several formalisms have been derived to treat these

fractional derivatives, each one having its advantages and shortcomings. In the popular

Riemann-Liouville formalism [31–34], the α-th derivative of a function f(x) can be formally

expressed as (
dα

dxα

)
f(x) =

1

Γ(1− α)

d

dx

∫ x

0

f(x′)

(x− x′)α
dx′, (2)

for 0 < α < 1. For the case of the laplacian operator ∆ = ∂2/∂x2 + ∂2/∂y2, its fractional

form (−∆)α in two dimensions can be expressed as [34]

(−∆)αf(x) = L2,α

∫
f(x)− f(y)

|x− y|2+2α
dy, (3)
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with,

L2,α =
16 Γ(1 + α)

π |Γ(−α)|
, (4)

where Γ(x) is the Gamma function and 0 < α < 1 is the fractional exponent.

The fractional Laplacian (3) has found many applications in fields as diverse as Levy

processes in quantum mechanics [35], photonics [36], fractional kinetics and anomalous

diffusion [37–39], strange kinetics [40], fluid mechanics [39, 40], fractional quantum me-

chanics [41, 42], plasmas [43], electrical propagation in cardiac tissue [44] and biological

invasions [45].

In this work, we study the effect of replacing the usual two-dimensional discrete Laplacian

by its fractional form [46, 47], on the creation and stability of discrete vortex solitons on

a square lattice. As we will see, as the fractional exponent decreases, moving away from

α = 1, there is a stabilizing effect on this kind of helical modes, i. e., the power threshold

becomes reduced.

II. MODEL

Let us consider a square lattice, where the kinetic energy term in Eq.(1),
∑

mCm, can be

written as 4Cn+∆nCn, where ∆n corresponds a the well-known expression for the discretized

Laplacian

∆nCn = Cp+1,q + Cp−1,q − 4 Cp,q + Cp,q+1 + Cp,q−1, (5)

where n = (p, q). Equation (1) can then rewritten as

i
dCn

dt
+ 4Cn + ∆nCn + χ|Cn|2Cn = 0. (6)

Let us now replace the Laplacian ∆n by its fractional form (∆n)α, and given by [48, 49]

(∆n)αCn =
∑
m 6=n

(Cm − Cn) Kα(n−m) (7)

where,

Kα(m) =
1

|Γ(−α)|

∫ ∞
0

e−4t Im1(2t) Im2(2t) t
−1−α dt (8)
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with m = (m1,m2) and Im(x) is the modified special Bessel function. An equivalent expres-

sion for (∆n)α is

(∆n)αCj =

L2,α

∑
m 6=j

(Cm − Cj) G
2,2
3,3

(
1/2,−(j2−m2+1+α,j2−m2+1+α)

1/2+α,j1−m1,−(j1−m1)

∣∣∣ 1), (9)

where j = (j1, j2) and m = (m1,m2), and G(...) is the Meijer G-function. As we can see,

the symmetric kernel Kα(m) = Kα(−m) plays the role of a long-ranged coupling. Near

α = 1, K(m)→ δm,u where u = (1, 0) or u = (0, 1), i,e., coupling to nearest neighbors only.

Equation (6) can now be written as

i
dCn
dt

+ 4Cn +
∑
m 6=n

(Cm − Cn)Kα(m− n) + χ|Cn|2Cn = 0, (10)

With a bit of algebraic manipulations, it is possible to prove that Eq. (10) has two conserved

quantities namely, the power

P =
∑
n

|Cn(t)|2 (11)

and the Hamiltonian,

H =
∑

n(4−
∑

m 6=nK
α(n−m))|Cn|2∑

n

∑
m 6=nK

α(n−m)C∗nCm + (χ/2)
∑

n |Cn|4. (12)

These relations prove useful when monitoring the accuracy of numerical computations.

Now let us consider stationary modes defined by Cn(t) = eiλt φn, which obey

(−λ+ 4)φn +
∑
m 6=n

(φm − φn)Kα(m− n) + χ|φn|2φn = 0, (13)

where φn is the field amplitude that defines a complex spatial profile of the solution, and λ

is the (eigenvalue) propagation constant. It should be mentioned that, when dealing with a

finite square lattice, in expressions (6) and (13) the term 4 is to be replaced by 3 (2) when n

falls at the edge (corner). Figure 1 shows the effective site energy ε(n) = 4−
∑

m 6=nK
α(m−n)

and effective coupling Kα(m−n). We can see that, as α decreases, the range of the coupling

between two distant sites increases. In particular, for n = 0 and along the main diagonal

m=(m,m), its value can be shown to approach

Kα(m) ∼ 1

|Γ(−α)|
2−2m√
m

(n→∞), (14)

i.e., faster than exponential.
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FIG. 1. Top row: Effective coupling Kα(n −m) between m = (0, 0) and sites n = (n, 0) (left

column), n = (n, n) (middle column), and n = (n, 2n) (right column). Bottom row: Effective site

energy ε(n) for several fractional exponents α and n = (n, 0) (left column), n = (n, n) (middle

column), and n = (n, 2n) (right column). Number of sites = 10× 10. The numbers on each curve

denote the value of the fractional exponent.

III. DISCRETE VORTEX SOLITONS

Let us examine the nonlinear stationary modes given as complex solutions of Eq. (13) and

characterized by a nontrivial distribution of the phases. They form a set of N×N nonlinear

algebraic equations for the amplitudes {φn}. The form of the nonlinear term chosen here is

of the Kerr type (cubic), although other forms can be used, such as the saturable nonlinear-

ity [26]. Numerical solutions are obtained by the use of a multidimensional Newton-Raphson

scheme, using as a seed a solution in the form φn = An exp(iSθn), where S is the topological
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FIG. 2. 4-sites discrete vortex with S = 1 and exponent α = 0.2. Top left: Real part. Top right:

Imaginary part. Bottom left: Amplitude profile. Bottom right: Phase profile. (λ = 6)

charge and θn is the azimuthal angle of the nth site, with a highly localized distribution

for An. This ansatz is obtained from the decoupled limit, also known as the anticontinuous

limit, where each site becomes decoupled from each other. We use a finite N × N lattice

with open boundary conditions. Figures 2 and 3 show examples of two different discrete

vortex solitons with fractional exponent α = 0.2, and two values of the topological charge,

S = 1 and S = 2. The stability of the computed vortex solitons is carried out by a simple

linear stability analysis [50]

Results from the above procedure are displayed in Fig. 4. They are summarized by mean

7



of power vs eigenvalue diagrams, for several values of the fractional exponent α. Amplitude

(top left) and phase (bottom right) profiles for these kinds of stationary vortex solutions are

displayed at the inset of each diagram. We see that for vortex beams with S = 1 and four

main peaks, the off-site square (a) and diamond shape (b), increase their stability domain

as the α coefficient diminish. Similar behavior can be observed for those stationary modes

endowed with S = 2 and displaying six main peaks and hexagonal shape (c). However,

for modes with eight peaks and on-site square shape (d), the stability domain displays a

piecewise domain for high values of α. Here, we have employed a N × N square lattice

0

2

4

6

FIG. 3. 6-sites discrete vortex with S = 2 and exponent α = 0.2. Top left: Real part. Top right:

Imaginary part. Bottom left: Amplitude profile. Bottom right: Phase profile. (λ = 6)
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FIG. 4. P vs λ diagram of some vortex solitons, for several fractional exponents and topological

charges S = 1 (upper row) and S = 2 (lower row). Solid (dashed) lines represent stable (unstable)

solutions. Blue, orange, green and violet lines correspond to α = 0.8, 0.6, 0.4 and 0.2, respectively.

Amplitude (top left) and phase profile (bottom right) at inset of each diagram corresponds to

solutions for λ = 12.

with N = 17. As normally happens in the non-fractional case, families of modes, indistinct

of α coefficient, exhibit a saddle-node bifurcation near to the linear band border. Here we

only calculate solutions belonging to the lower branch of the bifurcation point. Discrete

solitons display here highly localized patterns, as expected for a cubic nonlinearity. We can

observe a smooth spiral phase for any loop enclosing the central core, in those solutions with

symmetric amplitude profiles matching their nominal topological charge. On the contrary,

for the hexagonal asymmetric pattern, the topological charge only can be observable in the
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region where the field amplitude is significant.

In all cases, without exception, the power curves shift down as α is decreased. Moreover,

the main effect of small α values of fractionality is to diminish the power threshold to obtain

stable solutions, which leads to increase the domain of stability of these helical modes.of

these helical modes. Another observation concerns the limit α→ 0. In that limit, the range

of the coupling diverges and, as a result, all sites are coupled with each other. Assuming

that the amplitude at each site is nearly identical, the stationary equations (13) reduce to

(−λ + 4)φ + χφ3 ≈ 0. For φ 6= 0 we have (4 − λ) + χφ2 ≈ 0. Using P ∼ Zφ2 where Z is

the number of sites initially excited, we have P ≈ (Z/χ)(λ − 4). For λ < 4, we must take

φ = 0, which implies P = 0. This linear dependence can be clearly seen in all plots of Fig. 4

at small α values.

IV. CONCLUSIONS

In this work we considered the existence and stability of discrete vortex solitons of the

discrete nonlinear Schrödinger (DNLS) equation, when the usual Laplacian ∆n is replaced

by a fractional version (∆n)α with 0 < α < 1. We employed a square lattice and a Kerr

nonlinearity and computed discrete vortex modes and their stability for different values of

the fractional exponent α. Discrete vortex solitons reported here, namely, the diamond, off

and on-site square and hexagonal shape, exist for any value of fractional exponent and S = 1

and S = 2 topological charges. However, those with diamond and off-site square shape, are

only stable for S = 1. On the contrary, the on-site square and hexagonal shape cases are

stable for S = 2. The existence and stability of these modes are strongly related to their

spatial distribution, as well as to the lattice geometry. In all cases examined, a decrease of

the fractional exponent α causes the power stability curves to shift to lower values, which

could be an intriguing feature since a lower power threshold can ease their experimental

observation, hence, their potential usefulness in photonic applications.

The fractional model that we delve here could be seen as an alternative approach to

describe for example photonic lattices with a long range coupling. The peculiar effective

long-range coupling could be realized experimentally using a couple waveguide array, by

means of a judicious coupling-engineering [51]. This kind of optical devices can be built

by femtosecond laser inscription, in amorphous [52] as well as crystalline dielectric materi-
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als [53], or in photorefractive crystals, where the linear refractive index can be modulated

externally by light [54]. In both systems evanescent waves couple to neighbor waveguides

determining the transversal dynamics of light propagation.

In general, the basic properties of discrete vortices observed before for the standard

Laplacian exponent (α = 1) are more or less maintained in the case a fractional Laplacian.

This is itself interesting, since it suggests that the discrete vortex soliton properties are

robust against mathematical “perturbations”.
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