Mostrar el registro sencillo del ítem

dc.contributor.authorAnchique, Leonardo
dc.contributor.otherJ. Alcázar, Jackson
dc.contributor.otherRamos-Hernandez, Andrea
dc.contributor.otherMéndez-López, Maximiliano
dc.contributor.otherR. Mora, José
dc.contributor.otherRangel, Norma
dc.contributor.otherPaz, José Luis
dc.contributor.otherMárquez, Edgar
dc.date.accessioned2022-12-19T02:43:15Z
dc.date.available2022-12-19T02:43:15Z
dc.date.issued2021-05-13
dc.date.submitted2021-04-21
dc.identifier.citationAnchique L, Alcázar JJ, Ramos-Hernandez A, Méndez-López M, Mora JR, Rangel N, Paz JL, Márquez E. Predicting the Adsorption of Amoxicillin and Ibuprofen on Chitosan and Graphene Oxide Materials: A Density Functional Theory Study. Polymers (Basel). 2021 May 17;13(10):1620. doi: 10.3390/polym13101620. PMID: 34067695; PMCID: PMC8156938.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12834/1146
dc.description.abstractThe occurrence, persistence, and accumulation of antibiotics and non-steroidal antiinflammatory drugs (NSAIDs) represent a new environmental problem due to their harmful effects on human and aquatic life. A suitable absorbent for a particular type of pollutant does not necessarily absorb other types of compounds, so knowing the compatibility between a particular pollutant and a potential absorbent before experimentation seems to be fundamental. In this work, the molecular interactions between some pharmaceuticals (amoxicillin, ibuprofen, and tetracycline derivatives) with two potential absorbers, chitosan and graphene oxide models (pyrene, GO-1, and coronene, GO-2), were studied using the ωB97X-D/6-311G(2d,p) level of theory. The energetic interaction order found was amoxicillin/chitosan > amoxicillin/GO-1 > amoxicillin/GO-2 > ibuprofen/chitosan > ibuprofen/GO-2 > ibuprofen/GO-1, the negative sign for the interaction energy in all complex formations confirms good compatibility, while the size of Eint between 24–34 kcal/mol indicates physisorption processes. Moreover, the free energies of complex formation were negative, confirming the spontaneity of the processes. The larger interaction of amoxicillin Gos, compared to ibuprofen Gos, is consistent with previously reported experimental results, demonstrating the exceptional predictability of these methods. The second-order perturbation theory analysis shows that the amoxicillin complexes are mainly driven by hydrogen bonds, while van der Waals interactions with chitosan and hydrophobic interactions with graphene oxides are modelled for the ibuprofen complexes. Energy decomposition analysis (EDA) shows that electrostatic energy is a major contributor to the stabilization energy in all cases. The results obtained in this work promote the use of graphene oxides and chitosan as potential adsorbents for the removal of these emerging pollutants from water.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourcepolymersspa
dc.titlePredicting the Adsorption of Amoxicillin and Ibuprofen on Chitosan and Graphene Oxide Materials: A Density Functional Theory Studyspa
dc.title.alternativePredicting the Adsorption of Amoxicillin and Ibuprofen on Chitosan and Graphene Oxide Materials: A Density Functional Theory Studyspa
dcterms.bibliographicCitationBarker, K. Biosecure citizenship: Politicising symbiotic associations and the construction of biological threat. Trans. Inst. Br. Geogr. 2010, 35, 350–363. [CrossRef]spa
dcterms.bibliographicCitationBiermann, C.; Anderson, R.M. Conservation, biopolitics, and the governance of life and death. Geogr. Compass 2017, 11, e12329. [CrossRef]spa
dcterms.bibliographicCitationDempsey, J. Enterprising Nature: Economics, Markets and Finance in Global Biodiversity Politics; Wiley Blackwell: Hoboken, NJ, USA, 2016; ISBN 9781118640517.spa
dcterms.bibliographicCitationTortajada, C. Contributions of recycled wastewater to clean water and sanitation Sustainable Development Goals. NPJ Clean Water 2020, 3. [CrossRef]spa
dcterms.bibliographicCitationBunke, D.; Moritz, S.; Brack, W.; Herráez, D.L.; Posthuma, L.; Nuss, M. Developments in society and implications for emerging pollutants in the aquatic environment. Environ. Sci. Eur. 2019, 31, 1–17. [CrossRef]spa
dcterms.bibliographicCitationTang, Y.; Yin, M.; Yang, W.; Li, H.; Zhong, Y.; Mo, L.; Liang, Y.; Ma, X.; Sun, X. Emerging pollutants in water environment: Occurrence, monitoring, fate, and risk assessment. Water Environ. Res. 2019, 91, 984–991. [CrossRef]spa
dcterms.bibliographicCitationFernandes, M.J.; Paíga, P.; Silva, A.; Llaguno, C.P.; Carvalho, M.; Vázquez, F.M.; Delerue-Matos, C. Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal. Chemosphere 2020, 239. [CrossRef]spa
dcterms.bibliographicCitationKhan, H.K.; Rehman, M.Y.A.; Malik, R.N. Fate and toxicity of pharmaceuticals in water environment: An insight on their occurrence in South Asia. J. Environ. Manag. 2020, 271. [CrossRef]spa
dcterms.bibliographicCitationNgqwala, N.P.; Muchesa, P. Occurrence of pharmaceuticals in aquatic environments: A review and potential impacts in South Africa. S. Afr. J. Sci. 2020, 116. [CrossRef]spa
dcterms.bibliographicCitationPraveena, S.M.; Mohd Rashid, M.Z.; Mohd Nasir, F.A.; Sze Yee, W.; Aris, A.Z. Occurrence and potential human health risk of pharmaceutical residues in drinking water from Putrajaya (Malaysia). Ecotoxicol. Environ. Saf. 2019, 180, 549–556. [CrossRef]spa
dcterms.bibliographicCitationIde, A.H.; Osawa, R.A.; Marcante, L.O.; da Costa Pereira, J.; de Azevedo, J.C.R. Occurrence of Pharmaceutical Products, Female Sex Hormones and Caffeine in a Subtropical Region in Brazil. CLEAN Soil Air Water 2017, 45, 1700334. [CrossRef]spa
dcterms.bibliographicCitationSanganyado, E.; Lu, Z.; Fu, Q.; Schlenk, D.; Gan, J. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Res. 2017, 124, 527–542. [CrossRef]spa
dcterms.bibliographicCitationMadikizela, L.M.; Tavengwa, N.T.; Chimuka, L. Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods. J. Environ. Manag. 2017, 193, 211–220. [CrossRef]spa
dcterms.bibliographicCitationKumar, A.; Pal, D. Antibiotic resistance and wastewater: Correlation, impact and critical human health challenges. J. Environ. Chem. Eng. 2018, 6, 52–58. [CrossRef]spa
dcterms.bibliographicCitationTiedje, J.M.; Wang, F.; Manaia, C.M.; Virta, M.; Sheng, H.; Ma, L.; Zhang, T.; Topp, E. Antibiotic Resistance Genes in the Human-Impacted Environment: A One Health Perspective. Pedosphere 2019, 29, 273–282. [CrossRef]spa
dcterms.bibliographicCitationSanganyado, E.; Gwenzi, W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Sci. Total Environ. 2019, 669, 785–797. [CrossRef]spa
dcterms.bibliographicCitationZhang, J.; Li, W.; Chen, J.; Qi, W.; Wang, F.; Zhou, Y. Impact of biofilm formation and detachment on the transmission of bacterial antibiotic resistance in drinking water distribution systems. Chemosphere 2018, 203, 368–380. [CrossRef]spa
dcterms.bibliographicCitation. Aus der Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environmentGlobal occurrences and perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [CrossRef]spa
dcterms.bibliographicCitationTyumina, E.A.; Bazhutin, G.A.; Cartagena Gómez, A.d.P.; Ivshina, I.B. Nonsteroidal Anti-inflammatory Drugs as Emerging Contaminants. Microbiology 2020, 89, 148–163. [CrossRef]spa
dcterms.bibliographicCitationAgunbiade, F.O.; Moodley, B. Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa. Environ. Toxicol. Chem. 2016, 35, 36–46. [CrossRef]spa
dcterms.bibliographicCitationSwan, G.E.; Cuthbert, R.; Quevedo, M.; Green, R.E.; Pain, D.J.; Bartels, P.; Cunningham, A.A.; Duncan, N.; Meharg, A.A.; Oaks, J.L.; et al. Toxicity of diclofenac to Gyps vultures. Biol. Lett. 2006, 2, 279–282. [CrossRef]spa
dcterms.bibliographicCitationOaks, J.L.; Gilbert, M.; Virani, M.Z.; Watson, R.T.; Meteyer, C.U.; Rideout, B.A.; Shivaprasad, H.L.; Ahmed, S.; Chaudhry, M.J.I.; Arshad, M.; et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 2004, 427, 630–633. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationPrakash, V.; Pain, D.J.; Cunningham, A.A.; Donald, P.F.; Prakash, N.; Verma, A.; Gargi, R.; Sivakumar, S.; Rahmani, A.R. Catastrophic collapse of indian white-backed Gyps bengalensis and long-billed Gyps indicus vulture populations. Biol. Conserv. 2003, 109, 381–390. [CrossRef]spa
dcterms.bibliographicCitationKudrna, J.; Hnilicka, F.; Kubes, J.; Vachova, P.; Hnilickova, H.; Kuklova, M. Effect of Acetaminophen (APAP) on Physiological Indicators in Lactuca sativa. Life 2020, 10, 303. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationAlkimin, G.D.; Daniel, D.; Frankenbach, S.; Serôdio, J.; Soares, A.M.V.M.; Barata, C.; Nunes, B. Evaluation of pharmaceutical toxic effects of non-standard endpoints on the macrophyte species Lemna minor and Lemna gibba. Sci. Total Environ. 2019, 657, 926–937. [CrossRef]spa
dcterms.bibliographicCitationGiménez, V.; Nunes, B. Effects of commonly used therapeutic drugs, paracetamol, and acetylsalicylic acid, on key physiological traits of the sea snail Gibbula umbilicalis. Environ. Sci. Pollut. Res. 2019, 26, 21858–21870. [CrossRef]spa
dcterms.bibliographicCitationMuga, H.E.; Mihelcic, J.R. Sustainability of wastewater treatment technologies. J. Environ. Manag. 2008, 88. [CrossRef]spa
dcterms.bibliographicCitationAlammar, A.; Park, S.H.; Ibrahim, I.; Deepak, A.; Holtzl, T.; Dumée, L.F.; Lim, H.N.; Szekely, G. Architecting neonicotinoidscavenging nanocomposite hydrogels for environmental remediation. Appl. Mater. Today 2020, 21. [CrossRef]spa
dcterms.bibliographicCitationBenyekkou, N.; Ghezzar, M.R.; Abdelmalek, F.; Addou, A. Elimination of paracetamol from water by a spent coffee grounds biomaterial. Environ. Nanotechnol. Monit. Manag. 2020, 14. [CrossRef]spa
dcterms.bibliographicCitationFotsing, P.N.; Woumfo, E.D.; Mezghich, S.; Mignot, M.; Mofaddel, N.; Le Derf, F.; Vieillard, J. Surface modification of biomaterials based on cocoa shell with improved nitrate and Cr(vi) removal. RSC Adv. 2020, 10. [CrossRef]spa
dcterms.bibliographicCitationRangabhashiyam, S.; Suganya, E.; Selvaraju, N.; Varghese, L.A. Significance of exploiting non-living biomaterials for the biosorption of wastewater pollutants. World J. Microbiol. Biotechnol. 2014, 30, 1669–1689. [CrossRef]spa
dcterms.bibliographicCitationPeterson, J.W.; Petrasky, L.J.; Seymour, M.D.; Burkhart, R.S.; Schuiling, A.B. Adsorption and breakdown of penicillin antibiotic in the presence of titanium oxide nanoparticles in water. Chemosphere 2012, 87. [CrossRef]spa
dcterms.bibliographicCitationLiu, M.; Liu, Y.; Bao, D.; Zhu, G.; Yang, G.; Geng, J.; Li, H. Effective Removal of Tetracycline Antibiotics from Water using Hybrid Carbon Membranes. Sci. Rep. 2017, 7. [CrossRef]spa
dcterms.bibliographicCitationPap, S.; Taggart, M.A.; Shearer, L.; Li, Y.; Radovic, S.; Turk Sekulic, M. Removal behaviour of NSAIDs from wastewater using a P-functionalised microporous carbon. Chemosphere 2021, 264. [CrossRef]spa
dcterms.bibliographicCitationPhasuphan, W.; Praphairaksit, N.; Imyim, A. Removal of ibuprofen, diclofenac, and naproxen from water using chitosan-modified waste tire crumb rubber. J. Mol. Liq. 2019, 294. [CrossRef]spa
dcterms.bibliographicCitationKhan, N.A.; Khan, S.U.; Ahmed, S.; Farooqi, I.H.; Yousefi, M.; Mohammadi, A.A.; Changani, F. Recent trends in disposal and treatment technologies of emerging-pollutants- A critical review. TrAC Trends Anal. Chem. 2020, 122. [CrossRef]spa
dcterms.bibliographicCitationCheca, M.; Beltrán, F.J.; Rivas, F.J.; Cordero, E. On the role of a graphene oxide/titania catalyst, visible LED and ozone in removing mixtures of pharmaceutical contaminants from water and wastewater. Environ. Sci. Water Res. Technol. 2020, 6. [CrossRef]spa
dcterms.bibliographicCitationZhang, Q.; Hou, Q.; Huang, G.; Fan, Q. Removal of heavy metals in aquatic environment by graphene oxide composites: A review. Environ. Sci. Pollut. Res. 2020, 27, 190–209. [CrossRef]spa
dcterms.bibliographicCitationÇalı¸skan Salihi, E.; Wang, J.; Kabacao ˘glu, G.; Kırkulak, S.; Šiller, L. Graphene oxide as a new generation adsorbent for the removal of antibiotics from waters. Sep. Sci. Technol. 2021, 56. [CrossRef]spa
dcterms.bibliographicCitationKarimi-Maleh, H.; Ayati, A.; Davoodi, R.; Tanhaei, B.; Karimi, F.; Malekmohammadi, S.; Orooji, Y.; Fu, L.; Sillanpää, M. Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: A review. J. Clean. Prod. 2021, 291. [CrossRef]spa
dcterms.bibliographicCitationCosta, M.P.M.; Prates, L.M.; Baptista, L.; Cruz, M.T.M.; Ferreira, I.L.M. Interaction of polyelectrolyte complex between sodium alginate and chitosan dimers with a single glyphosate molecule: A DFT and NBO study. Carbohydr. Polym. 2018, 198. [CrossRef]spa
dcterms.bibliographicCitationKarimi-Maleh, H.; Shafieizadeh, M.; Taher, M.A.; Opoku, F.; Kiarii, E.M.; Govender, P.P.; Ranjbari, S.; Rezapour, M.; Orooji, Y. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J. Mol. Liq. 2020, 298. [CrossRef]spa
dcterms.bibliographicCitationBahamon, D.; Vega, L.F. Molecular simulations of phenol and ibuprofen removal from water using multilayered graphene oxide membranes. Mol. Phys. 2019, 117. [CrossRef]spa
dcterms.bibliographicCitationWazzan, N. Adsorption of non-steroidal anti-inflammatory drugs (NSAIDs) on nanographene surface: Density functional theory study. Arab. J. Chem. 2021, 14. [CrossRef]spa
dcterms.bibliographicCitationZhang, Z.; Liu, X.; Wang, K.; Niu, Y.; Chen, H.; Bai, L.; Xue, Z. Removal of Ag(I) from aqueous solution by thiourea-functionalized silica gel: Experimental and theoretical study. Desalin. Water Treat. 2019, 151. [CrossRef]spa
dcterms.bibliographicCitationPlazinski, W.; Plazinska, A. Molecular dynamics study of the interactions between phenolic compounds and alginate/alginic acid chains. New J. Chem. 2011, 35. [CrossRef]spa
dcterms.bibliographicCitationGeerlings, P.; Chamorro, E.; Chattaraj, P.K.; De Proft, F.; Gázquez, J.L.; Liu, S.; Morell, C.; Toro-Labbé, A.; Vela, A.; Ayers, P. Conceptual density functional theory: Status, prospects, issues. Theor. Chem. Acc. 2020, 139. [CrossRef]spa
dcterms.bibliographicCitationOkoli, C.P.; Guo, Q.J.; Adewuyi, G.O. Application of quantum descriptors for predicting adsorption performance of starch and cyclodextrin adsorbents. Carbohydr. Polym. 2014, 101. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationWang, Y.; Chen, J.; Wei, X.; Hernandez Maldonado, A.J.; Chen, Z. Unveiling Adsorption Mechanisms of Organic Pollutants onto Carbon Nanomaterials by Density Functional Theory Computations and Linear Free Energy Relationship Modeling. Environ. Sci. Technol. 2017, 51. [CrossRef]spa
dcterms.bibliographicCitationEfremenko, I.; Sheintuch, M. Predicting solute adsorption on activated carbon: Phenol. Langmuir 2006, 22. [CrossRef]spa
dcterms.bibliographicCitationWang, Y.; Tang, W.; Peng, Y.; Chen, Z.; Chen, J.; Xiao, Z.; Zhao, X.; Qu, Y.; Li, J. Predicting the adsorption of organic pollutants on boron nitride nanosheets: Via in silico techniques: DFT computations and QSAR modeling. Environ. Sci. Nano 2021, 8. [CrossRef]spa
dcterms.bibliographicCitationMishima, K.; Du, X.; Miyamoto, N.; Kano, N.; Imaizumi, H. Experimental and theoretical studies on the adsorption mechanisms of uranium (VI) ions on chitosan. J. Funct. Biomater. 2018, 9, 49. [CrossRef]spa
dcterms.bibliographicCitationAnnadurai, G. Design of optimum response surface experiments for adsorption of direct dye on chitosan. Bioprocess Eng. 2000, 23. [CrossRef]spa
dcterms.bibliographicCitationRegti, A.; El Ayouchia, H.B.; Laamari, M.R.; Stiriba, S.E.; Anane, H.; El Haddad, M. Experimental and theoretical study using DFT method for the competitive adsorption of two cationic dyes from wastewaters. Appl. Surf. Sci. 2016, 390. [CrossRef]spa
dcterms.bibliographicCitationDastani, N.; Arab, A.; Raissi, H. DFT computational study towards investigating Cladribine anticancer drug adsorption on the graphene and functionalized graphene. Struct. Chem. 2020, 31. [CrossRef]spa
dcterms.bibliographicCitationParolini, M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Sci. Total Environ. 2020, 740. [CrossRef]spa
dcterms.bibliographicCitationOgunbanwo, O.M.; Kay, P.; Boxall, A.B.; Wilkinson, J.; Sinclair, C.J.; Shabi, R.A.; Fasasi, A.E.; Lewis, G.A.; Amoda, O.A.; Brown, L.E. High Concentrations of Pharmaceuticals in a Nigerian River Catchment. Environ. Toxicol. Chem. 2020. [CrossRef]spa
dcterms.bibliographicCitationBell, K.Y.; Wells, M.J.M.; Traexler, K.A.; Pellegrin, M.-L.; Morse, A.; Bandy, J. Emerging Pollutants. Water Environ. Res. 2011, 83. [CrossRef]spa
dcterms.bibliographicCitationLuo, Y.; Xu, L.; Rysz, M.; Wang, Y.; Zhang, H.; Alvarez, P.J.J. Occurrence and Transport of Tetracycline, Sulfonamide, Quinolone, and Macrolide Antibiotics in the Haihe River Basin, China. Environ. Sci. Technol. 2011, 45. [CrossRefspa
dcterms.bibliographicCitationZhang, Q.-Q.; Ying, G.-G.; Pan, C.-G.; Liu, Y.-S.; Zhao, J.-L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationDeng, W.; Li, N.; Zheng, H.; Lin, H. Occurrence and risk assessment of antibiotics in river water in Hong Kong. Ecotoxicol. Environ. Saf. 2016, 125. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSingh, R.; Singh, A.P.; Kumar, S.; Giri, B.S.; Kim, K.-H. Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies. J. Clean. Prod. 2019, 234. [CrossRef]spa
dcterms.bibliographicCitationPeña-Guzmán, C.; Ulloa-Sánchez, S.; Mora, K.; Helena-Bustos, R.; Lopez-Barrera, E.; Alvarez, J.; Rodriguez-Pinzón, M. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. J. Environ. Manag. 2019, 237. [CrossRef]spa
dcterms.bibliographicCitationGriffero, L.; Alcántara-Durán, J.; Alonso, C.; Rodríguez-Gallego, L.; Moreno-González, D.; García-Reyes, J.F.; Molina-Díaz, A.; Pérez-Parada, A. Basin-scale monitoring and risk assessment of emerging contaminants in South American Atlantic coastal lagoons. Sci. Total Environ. 2019, 697. [CrossRef]spa
dcterms.bibliographicCitationSerna-Galvis, E.A.; Botero-Coy, A.M.; Martínez-Pachón, D.; Moncayo-Lasso, A.; Ibáñez, M.; Hernández, F.; Torres-Palma, R.A. Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes. Water Res. 2019, 154. [CrossRef]spa
dcterms.bibliographicCitationGallego-Álvarez, I.; García-Rubio, R.; Martínez-Ferrero, J. Environmental performance concerns in Latin America: Determinant factors and multivariate analysis. Rev. Contab. 2018, 21. [CrossRef]Gallego-Álvarez, I.; García-Rubio, R.; Martínez-Ferrero, J. Environmental performance concerns in Latin America: Determinant factors and multivariate analysis. Rev. Contab. 2018, 21. [CrossRef]spa
dcterms.bibliographicCitationChen, Y.; Chen, L.; Bai, H.; Li, L. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J. Mater. Chem. A 2013, 1, 1992–2001. [CrossRef]spa
dcterms.bibliographicCitationKhan, A.; Wang, J.; Li, J.; Wang, X.; Chen, Z.; Alsaedi, A.; Hayat, T.; Chen, Y.; Wang, X. The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: A review. Environ. Sci. Pollut. Res. 2017, 24. [CrossRef]spa
dcterms.bibliographicCitationŠponer, J.; Hobza, P.; Leszczynski, J. Computational Approaches to the Studies of the Interactions of Nucleic Acid Bases. Theor. Comput. Chem. 1999, 8, 85–117. [CrossRef]spa
dcterms.bibliographicCitationHayes, I.C.; Stone, A.J. An intermolecular perturbation theory for the region of moderate overlap. Mol. Phys. 1984, 53. [CrossRef]spa
dcterms.bibliographicCitationHanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeerschd, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [CrossRef]spa
dcterms.bibliographicCitationDennington, R.; Keith, T.A.; Millam, J.M. GaussView 2016; Semichem Inc.: Shawnee Mission, KS, USA, 2016.spa
dcterms.bibliographicCitationFrisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision, D.01; Gaussian Inc.: Wallingford, CT, USA, 2009.spa
dcterms.bibliographicCitationBahamon, D.; Carro, L.; Guri, S.; Vega, L.F. Computational study of ibuprofen removal from water by adsorption in realistic activated carbons. J. Colloid Interface Sci. 2017, 498. [CrossRef]spa
dcterms.bibliographicCitationJuarez-Morales, L.A.; Hernandez-Cocoletzi, H.; Chigo-Anota, E.; Aguila-Almanza, E.; Tenorio-Arvide, M.G. Chitosan-Aflatoxins B1, M1 Interaction: A Computational Approach. Curr. Org. Chem. 2018, 21. [CrossRef]spa
dcterms.bibliographicCitationMahmoud, E.-S.; Omar, A.; Bayoumy, A.M.; Ibrahim, M. Chitosan Ibuprofen Interaction: Modeling Approach. Sens. Lett. 2018, 16. [CrossRef]spa
dcterms.bibliographicCitationAarab, N.; Laabd, M.; Eljazouli, H.; Lakhmiri, R.; Kabli, H.; Albourine, A. Experimental and DFT studies of the removal of pharmaceutical metronidazole from water using polypyrrole. Int. J. Ind. Chem. 2019, 10. [CrossRef]spa
dcterms.bibliographicCitationKaczmarek-K ˛edziera, A. Gas Phase Computational Study of Diclofenac Adsorption on Chitosan Materials. Molecules 2020, 25, 2549. [CrossRef]spa
dcterms.bibliographicCitationMora, J.R.; Lezama, J.; Márquez, E.; Escalante, L.; Córdova, T.; Chuchani, G. Theoretical study of neighboring carbonyl group participation in the elimination kinetics of chloroketones in the gas phase. J. Phys. Org. Chem. 2011, 24. [CrossRef]spa
dcterms.bibliographicCitationLuiggi, M.; Mora, J.R.; Loroño, M.; Marquez, E.; Lezama, J.; Cordova, T.; Chuchani, G. Theoretical calculations on the gas-phase thermal decomposition kinetics of selected thiomethyl chloroalkanes: A new insight of the mechanism. Comput. Theor. Chem. 2014, 1027. [CrossRef]spa
dcterms.bibliographicCitationMora, J.; Cervantes, C.; Marquez, E. New Insight into the Chloroacetanilide Herbicide Degradation Mechanism through a Nucleophilic Attack of Hydrogen Sulfide. Int. J. Mol. Sci. 2018, 19, 2864. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationZhang, R.; Zhuang, T.; Zhang, Q.; Wang, W. Mechanistic studies on the dibenzofuran and dibenzo-p-dioxin formation reactions from anthracene. Sci. Total Environ. 2019, 662. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationLiang, D.; Streefkerk, D.E.; Jordaan, D.; Wagemakers, J.; Baggerman, J.; Zuilhof, H. Silicon-Free SuFEx Reactions of Sulfonimidoyl Fluorides: Scope, Enantioselectivity, and Mechanism. Angew. Chem. 2020, 132. [CrossRef]spa
dcterms.bibliographicCitationWang, Z.; Yang, Y.; Donnelly, P.S.; Canty, A.J.; O’Hair, R.A.J. Desulfination versus decarboxylation as a means of generating threeand five-coordinate organopalladium complexes [(phen)nPd(C6H5)]+ (n = 1 and 2) to study their fundamental bimolecular reactivity. J. Organomet. Chem. 2019, 882. [CrossRef]spa
dcterms.bibliographicCitationMusher, J.I.; Salem, L. Energy of Interaction between Two Molecules. J. Chem. Phys. 1966, 44. [CrossRef]spa
dcterms.bibliographicCitationLu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33. [CrossRefspa
dcterms.bibliographicCitationBickelhaupt, F.M.; Baerends, E.J. Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry. In Reviews in Computational Chemistry; Wiley-VCH: New York, NY, USA, 2007; Volume 15, pp. 1–86.spa
dcterms.bibliographicCitationJohnson, J.K.; Zollweg, J.A.; Gubbins, K.E. The lennard-jones equation of state revisited. Mol. Phys. 1993, 78, 591–618. [CrossRef]spa
dcterms.bibliographicCitationJohnson, J.K.; Zollweg, J.A.; Gubbins, K.E. The lennard-jones equation of state revisited. Mol. Phys. 1993, 78, 591–618. [CrossRef]spa
dcterms.bibliographicCitationFukui, K.; Koga, N.; Fujimoto, H. Interaction frontier orbitals. J. Am. Chem. Soc. 1981, 103. [CrossRefspa
dcterms.bibliographicCitationKumar, A.; Grewal, A.S.; Singh, V.; Narang, R.; Pandita, D.; Lather, V. Synthesis, Antimicrobial Activity and QSAR Studies of Some New Sparfloxacin Derivatives. Pharm. Chem. J. 2018, 52. [CrossRef]spa
dcterms.bibliographicCitationMalhotra, R.; Ravesh, A.; Singh, V. Synthesis, characterization, antimicrobial activities, and QSAR studies of organotin(IV) complexes. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192. [CrossRef]spa
dcterms.bibliographicCitationCortes, E.; Mora, J.; Márquez, E. Modelling the Anti-Methicillin-Resistant Staphylococcus Aureus (MRSA) Activity of Cannabinoids: A QSAR and Docking Study. Crystals 2020, 10, 692. [CrossRef]spa
dcterms.bibliographicCitationFlores, M.C.; Márquez, E.A.; Mora, J.R. Molecular modeling studies of bromopyrrole alkaloids as potential antimalarial compounds: A DFT approach. Med. Chem. Res. 2018, 27. [CrossRefspa
dcterms.bibliographicCitationAlqahtani, F.; Aleanizy, F.; El Tahir, E.; Alhabib, H.; Alsaif, R.; Shazly, G.; AlQahtani, H.; Alsarra, I.; Mahdavi, J. Antibacterial Activity of Chitosan Nanoparticles Against Pathogenic, N. gonorrhoea. Int. J. Nanomed. 2020, 15. [CrossRef]spa
dcterms.bibliographicCitationNooshkam, M.; Falah, F.; Zareie, Z.; Tabatabaei Yazdi, F.; Shahidi, F.; Mortazavi, S.A. Antioxidant potential and antimicrobial activity of chitosan–inulin conjugates obtained through the Maillard reaction. Food Sci. Biotechnol. 2019, 28. [CrossRef]spa
dcterms.bibliographicCitationYildirim-Aksoy, M.; Beck, B.H. Antimicrobial activity of chitosan and a chitosan oligomer against bacterial pathogens of warmwater fish. J. Appl. Microbiol. 2017, 122. [CrossRef]spa
dcterms.bibliographicCitationHunter, C.A.; Singh, J.; Thornton, J.M. π–π interactions: The geometry and energetics of phenylalanine-phenylalanine interactions in proteins. J. Mol. Biol. 1991, 218. [CrossRef]spa
dcterms.bibliographicCitationZhou, R. Modeling of Nanotoxicity; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-15381-0.spa
dcterms.bibliographicCitationTsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K. Origin of Attraction and Directionality of the π/π Interaction: Model Chemistry Calculations of Benzene Dimer Interaction. J. Am. Chem. Soc. 2002, 124. [CrossRef]spa
dcterms.bibliographicCitationYin, J.; Zhang, J.; Fu, W.; Jiang, D.; Lv, N.; Liu, H.; Li, H.; Zhu, W. Theoretical prediction of the SO2 absorption by hollow silica based porous ionic liquids. J. Mol. Graph. Model. 2021, 103. [CrossRef]spa
dcterms.bibliographicCitationPramanik, B.; Ahmed, S.; Singha, N.; Das, B.K.; Dowari, P.; Das, D. Unorthodox Combination of Cation−π and Charge-Transfer Interactions within a Donor–Acceptor Pair. Langmuir 2019, 35. [CrossRef]spa
dcterms.bibliographicCitationBhattacharyya, P.K. Exploring Cation−π Interaction in the Complexes with B≡B Triple Bond: A DFT Study. J. Phys. Chem. A 2017, 121. [CrossRef]spa
dcterms.bibliographicCitationBronowska, K.A. Thermodynamics of Ligand-Protein Interactions: Implications for Molecular Design. In Thermodynamics— Interaction Studies—Solids, Liquids and Gases; IntechOpen: Rijeka, Croatia, 2011.spa
dcterms.bibliographicCitationGupta, M.; da Silva, E.F.; Hartono, A.; Svendsen, H.F. Theoretical Study of Differential Enthalpy of Absorption of CO 2 with MEA and MDEA as a Function of Temperature. J. Phys. Chem. B 2013, 117. [CrossRef]spa
dcterms.bibliographicCitationKim, I.; Hoff, K.A.; Hessen, E.T.; Haug-Warberg, T.; Svendsen, H.F. Enthalpy of absorption of CO2 with alkanolamine solutions predicted from reaction equilibrium constants. Chem. Eng. Sci. 2009, 64. [CrossRef]spa
dcterms.bibliographicCitationAl-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationPiccini, G.; Alessio, M.; Sauer, J.; Zhi, Y.; Liu, Y.; Kolvenbach, R.; Jentys, A.; Lercher, J.A. Accurate Adsorption Thermodynamics of Small Alkanes in Zeolites. Ab initio Theory and Experiment for H-Chabazite. J. Phys. Chem. C 2015, 119. [CrossRef]spa
dcterms.bibliographicCitationCampbell, C.T.; Sellers, J.R.V. Enthalpies and Entropies of Adsorption on Well-Defined Oxide Surfaces: Experimental Measurements. Chem. Rev. 2013, 113. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationDauenhauer, P.J.; Abdelrahman, O.A. A Universal Descriptor for the Entropy of Adsorbed Molecules in Confined Spaces. ACS Cent. Sci. 2018, 4. [CrossRef] [PubMed]spa
dcterms.bibliographicCitationGao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S.M.; Su, X. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 2012, 368. [CrossRef]spa
dcterms.bibliographicCitationFeiner, A.S. The Nernst equation. J. Chem. Educ. 1994, 71, 493–494. [CrossRef]spa
dcterms.bibliographicCitationAnastopoulos, I.; Kyzas, G.Z. Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? J. Mol. Liq. 2016, 218. [CrossRef]spa
dcterms.bibliographicCitationBeyhan, S.M.; Götz, A.W.; Visscher, L. Bond energy decomposition analysis for subsystem density functional theory. J. Chem. Phys. 2013, 138. [CrossRef]spa
dcterms.bibliographicCitationTe Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22. [CrossRef]spa
dcterms.bibliographicCitationMorokuma, K. Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H 2CO···2H2O. J. Chem. Phys. 1971, 55. [CrossRef]spa
dcterms.bibliographicCitationPhipps, M.J.S.; Fox, T.; Tautermann, C.S.; Skylaris, C.-K. Energy decomposition analysis approaches and their evaluation on prototypical protein–drug interaction patterns. Chem. Soc. Rev. 2015, 44. [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.3390/polym13101620
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.rights.ccAttribution-NonCommercial 4.0 International*
dc.subject.keywordsemergent pollutants; pharmaceuticals; absorption; density functional theory; natural bond orbitalspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.disciplineQuímicaspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc/4.0/

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por