Mostrar el registro sencillo del ítem

dc.contributor.authorFals, Jayson
dc.contributor.otherGarcia, Juan Rafael
dc.contributor.otherFalco, Marisa
dc.contributor.otherSedran, Ulises
dc.date.accessioned2022-11-15T20:50:00Z
dc.date.available2022-11-15T20:50:00Z
dc.date.issued2020-10-23
dc.date.submitted2020-08-18
dc.identifier.urihttps://hdl.handle.net/20.500.12834/892
dc.description.abstractTwo equilibrium FCC catalysts of the octane-barrel (ECAT-D) and resid (ECAT-R) types were used in the cracking of a typical vacuum gasoil (VGO) and its saturated (SF), aromatic (AF), and resin (RF) fractions. The experiments were carried out in a batch, fluidized bed laboratory CREC Riser Simulator reactor. The reaction temperature was 500 °C, the catalyst-to-oil relationship was 1, with 0.2 g of the catalyst being used in each experiment, and the reaction times were 0.7, 1.5, and 3 s. The ranking of the reactivities of the different feedstocks was SF > VGO > AF > RF over both catalysts. While the AF and RF fractions yielded more gasoline than the SF fraction, the latter showed the highest yields of LPG. The coke forming trend followed the order SF < VGO < AF < RF. Even though catalyst ECAT-D, with a higher and stronger acidity, was more active than catalyst ECAT-R, which has less acidity and better textural properties (higher mesoporosity and pore diameter), the latter was less affected by coke deposition, considering the changes in the specific surface area and acidic properties after use. Coke impacted more severely on Brönsted acid sites than on Lewis sites, particularly when the AF and RF fractions were used. The stronger acid sites were more severely affected by coke, particularly in catalyst ECAT-D. The negative effect on strong acidic sites was consistent with the increasing basic character of the feedstocks, following the order SF < VGO < AF < RFspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceEnergy & Fuelsspa
dc.titlePerformance of Equilibrium FCC Catalysts in the Conversion of the SARA Fractions in VGOspa
dcterms.bibliographicCitation(1) Xu, C.; Gao, J.; Zhao, S.; Lin, S. Correlation between feedstock SARA components and FCC product yields. Fuel 2005, 84, 669−674spa
dcterms.bibliographicCitation(2) Speight, J. The Chemistry and Technology of Petroleum, Fifth ed.; CRC Press-Taylor & Francis Group: Boca Raton, LA, 2014spa
dcterms.bibliographicCitation(3) Mendes, F. L.; Texeira da Silva, V.; Pacheco, M. E.; de Rezende Pinho, A.; Henriques, C. A. Hydrotreating of fast pyrolysis oil: A comparison of carbons and carboncovered alumina as supports for Ni2P. Fuel 2020, 264, 116764spa
dcterms.bibliographicCitation(4) Jimenez-García, G.; Aguilar-Lo ́ pez, R.; Maya-Yescas, R. The ́ fluidized-bed catalytic cracking unit building its future environment. Fuel 2011, 90, 3531−3541spa
dcterms.bibliographicCitation(5) Palos, R.; Gutierrez, A.; Fernandez, M. L.; Trueba, D.; Bilbao, J.; ́ Arandes, J. M. Upgrading of heavy coker naphtha by means of catalytic cracking in refinery FCC unit. Fuel Process. Technol. 2020, 205, 106454.spa
dcterms.bibliographicCitation(6) Jimenez-García, G.; de Lasa, H.; Maya-Yescas, R. Simultaneous ́ estimation of kinetics and catalysts activity during cracking of 1,3,5- tri-isopropyl benzene on FCC catalyst. Catal. Today 2014, 220-222, 178.spa
dcterms.bibliographicCitation178. (7) Matheus, C. R. V.; Aguiar, E. F. S. The role of MPV reaction in the synthesis of propene from ethanol through the acetone route. Catal. Commun. 2020, 145, 106096.spa
dcterms.bibliographicCitation(8) Chemical Reactor Technology for Environmentally Safe Reactors and Products; de Lasa, H., Dogu, G., Ravella, A. Eds.; Kluwer, Academic Publishers: Dordrecht, The Netherlands, 1992; Vol. 225.spa
dcterms.bibliographicCitation(9) Sadeghbeigi, R., Fluid Catalytic Cracking Handbook, Third ed.; Elsevier, 2012.spa
dcterms.bibliographicCitation(10) Gilbert, W.; Morgado, E.; de Abreu, M.; de la Puente, G.; Passamonti, F.; Sedran, U. A novel fluid catalytic cracking approach for producing low aromatic LCO. Fuel Process. Technol. 2011, 92, 2235−2240.spa
dcterms.bibliographicCitation(11) Al-Absi, A.; Aitani, A.; Al-Khattaf, S. Thermal and catalytic cracking of whole crude oils at high severity. J. Anal. Appl. Pyrolysis 2020, 145, 104705.spa
dcterms.bibliographicCitation(12) Lappas, A.; Patiaka, D.; Dimitriadis, B.; Vasalos, I. Separation characterization and catalytic cracking kinetics of aromatic fractions obtained from FCC feedstocks. Appl. Catal., A 1997, 152, 7−26.spa
dcterms.bibliographicCitation(13) Sanchez-Minero, F.; Ancheyta, J.; Silva-Oliver, G.; Flores-Valle, S. Predicting SARA composition of crude oil by means of NMR. Fuel 2013, 110, 318−321.spa
dcterms.bibliographicCitation2013, 110, 318−321. (14) Fan, T.; Buckley, J. Rapid and accurate SARA analysis of medium gravity crude oils. Energy Fuels 2002, 16, 1571−1575.spa
dcterms.bibliographicCitation(15) Florez, M.; Guerrero, J.; Cabanzo, R.; Mejía-Ospino, E. SARA analysis and Conradson carbon residue prediction of Colombian crude oils using PLSR and Raman spectroscopy. J. Pet. Sci. Eng. 2017, 156, 966−970.spa
dcterms.bibliographicCitation(16) Sahu, R.; Song, B.; Im, J.; Jeon, Y.; Lee, C. A review of recent advances in catalytic hydrocracking of heavy residues. J. Ind. Eng. Chem. 2015, 27, 12−24.spa
dcterms.bibliographicCitation(17) Petti, T.; Tomczak, Z.; Pereira, C.; Cheng, W. Investigation of nickel species on commercial FCC equilibrium catalysts-implications on catalyst performance and laboratory evaluation. Appl. Catal., A 1998, 169, 95−109.spa
dcterms.bibliographicCitation(18) Yuxia, Z.; Quansheng, D.; Wei, L.; Liwen, T.; Jun, L. Studies of iron effects on FCC catalysts. Fluid Catalytic Cracking VII Materials, Methods and Process Innovations; Elsevier, 2007; Vol. 166, pp 201− 212.spa
dcterms.bibliographicCitation(19) ASTM D2007-11: Standard test method for characteristic groups in rubber extender and processing oils and other petroleum-derived oils by the clay-gel absorption chromatographic method; ASTM International, 2016.spa
dcterms.bibliographicCitation016. (20) Fals, J.; García, J. R.; Falco, M.; Sedran, U. Coke from SARA fractions in VGO. Impact on Y zeolite acidity and physical properties. Fuel 2018, 225, 26−34.spa
dcterms.bibliographicCitation(21) Mullins, O.; Sheu, E.; Hammami, A.; Marshall, A. Asphaltenes, heavy oils and petroleomics; Springer: New York, NY, 2007.spa
dcterms.bibliographicCitation(22) Nalwaya, V.; Tantayakom, V.; Piumsomboon, P.; Fogler, S. Studies on asphaltenes through analysis of polar fractions. Ind. Eng. Chem. Res. 1999, 38, 964−972.spa
dcterms.bibliographicCitation(23) Pereira, J. C.; Lopez, I.; Salas, R.; Silva, F.; Fernandez, C.; Urbina, C.; Lopez, J. C. Resins: The molecules responsible for the stability/instability phenomena of asphaltenes. Energy Fuels 2007, 21, 1317−1321.spa
dcterms.bibliographicCitation(24) Al-Khattaf, S.; de Lasa, H. The role of diffusion in alkylbenzenes catalytic cracking. Appl. Catal., A 2002, 226, 139−153spa
dcterms.bibliographicCitation(25) Scherzer, J. Octane-enhancing, zeolitic FCC catalysts: scientific and technical aspects. Catal. Rev.: Sci. Eng. 1989, 31, 215−354.spa
dcterms.bibliographicCitation(26) Karakhanov, E.; Glotov, A.; Nikiforova, A.; Vutolkina, A.; Ivanov, A.; Kardashev, S.; Maksimov, A.; Lysenko, S. Catalytic cracking additives based on mesoporous MCM-41 for sulfur removal. Fuel Process. Technol. 2016, 153, 50−57.spa
dcterms.bibliographicCitation(27) Bobkova, T.; Potapenko, O.; Doronin, V.; Sorokina, T. Transformations of n-undecane−indole model mixtures over the cracking catalysts resistant to nitrogen compounds. Fuel Process. Technol. 2018, 172, 172−178.spa
dcterms.bibliographicCitation(28) Glotov, A.; Levshakov, N.; Vutolkina, A.; Lysenko, S.; Karakhanov, E.; Vinokurov, V. Aluminosilicates supported Lacontaining sulfur reduction additives for FCC catalyst: Correlation between activity, support structure and acidity. Catal. Today 2019, 329, 135−141.spa
dcterms.bibliographicCitation(29) Pujro, R.; Falco, M.; Devard, A.; Sedran, U. Reactivity of the saturated, aromatic, and resin fractions of ATR resids under FCC conditions. Fuel 2014, 119, 219−225.spa
dcterms.bibliographicCitation(30) Martinez, C.; Verboekend, D.; Perez-Ramírez, J.; Corma, A. ́ Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking. Catal. Sci. Technol. 2013, 3, 972−981.spa
dcterms.bibliographicCitation(31) García, J. R.; Falco, M.; Sedran, U. Impact of the desilication treatment of Y zeolite on the catalytic cracking of bulky hydrocarbon molecules. Top. Catal. 2016, 59, 268−277.spa
dcterms.bibliographicCitation(32) Wojciechowski, B.; Corma, A. Catalytic Cracking: Catalysts. Chemistry, and Kinetics; Marcel Dekker: New York, NY, 1986.spa
dcterms.bibliographicCitation(33) Guisnet, M.; Magnoux, P. Organic chemistry of coke formation. Appl. Catal., A 2001, 212, 83−96.spa
dcterms.bibliographicCitation(34) Ochoa, A.; Vicente, H.; Sierra, I.; Arandes, J. M.; Castaño, P. Implications of feeding or cofeeding bio-oil in the fluid catalytic cracker (FCC) in terms of regeneration kinetics and energy balance. Energy 2020, 209, 118467spa
dcterms.bibliographicCitation(35) Cerqueira, H.; Caeiro, G.; Costa, L.; Ribeiro, F. R. Deactivation of FCC catalysts. J. Mol. Catal. A: Chem. 2008, 292, 1−13.spa
dcterms.bibliographicCitation(36) Guisnet, M.; Costa, L.; Ribeiro, F. R. Prevention of zeolite deactivation by coking. J. Mol. Catal. A: Chem. 2009, 305, 69−83spa
dcterms.bibliographicCitation(37) Ibarra, A.; Veloso, A.; Bilbao, J.; Arandes, J.; Castaño, P. Dual coke deactivation pathways during the catalytic cracking of raw bio-oil and vacuum gasoil in FCC conditions. Appl. Catal., B 2016, 182, 336−346.spa
dcterms.bibliographicCitation(38) Passamonti, F. J.; Puente, G. d. l.; Sedran, U. Comparison between MAT flow fixed bed and batch fluidized bed reactors in the evaluation of FCC catalysts. 1. Conversion and yields of the main hydrocarbon groups. Energy Fuels 2009, 23, 1358−1363.spa
dcterms.bibliographicCitation(39) Sanchez-Castillo, M. A.; Madon, R. J.; Dumesic, J. A. Role of rare earth cations in Y zeolite for hydrocarbon cracking. J. Phys. Chem. B 2005, 109, 2164−2175.spa
dcterms.bibliographicCitation(40) Trigueiro, F.; Monteiro, D.; Zotin, F.; Sousa-Aguiar, E. F. Thermal stability of Y zeolites containing different rare earth cations. J. Alloys Compd. 2002, 344, 337−341.spa
dcterms.bibliographicCitation(41) Pekediz, A.; Kraemer, D.; Chabot, J.; de Lasa, H. Mixing Patterns in a Novel Riser Simulator. In Chemical Reactor Technology for Environmentally Safe Reactors and Products; de Lasa, H., Dogu, G., Ravella, A., Eds.; Kluwer, Academic Publishers: Dordrecht, The Netherlands, 1992; Vol. 225, pp 133−146spa
dcterms.bibliographicCitation(42) Anderson, P.; Sharkey, J.; Walsh, R. Calculation of the research octane number of motor gasolines from gas chromatographic data and a new approach to motor gasoline quality control. J. Inst. Petr. 1972, 58, 83−94.spa
dcterms.bibliographicCitation(43) Johnson, M. F. L. Estimation of the zeolite content of a catalyst from nitrogen adsorption isotherms. J. Catal. 1978, 52, 425−431spa
dcterms.bibliographicCitation(44) Emeis, C. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 1993, 141, 347−54.spa
dcterms.bibliographicCitation(45) Aguayo, A.; Castaño, P.; Mier, D.; Gayubo, A.; Olazar, M.; Bilbao, J. Effect of cofeeding butane with methanol on the deactivation by coke of a HZSM-5 zeolite catalyst. Ind. Eng. Chem. Res. 2011, 50, 9980−9988spa
dcterms.bibliographicCitation(46) Castaño, P.; Elordi, G.; Olazar, M.; Bilbao, J. Imaging the profiles of deactivating species on the catalyst used for the cracking of waste polyethylene by combined microscopies. ChemCatChem 2012, 4, 631−635.spa
dcterms.bibliographicCitation(47) Behera, B.; Ray, S.; Singh, I. Structural characterization of FCC feeds from Indian refineries by NMR spectroscopy. Fuel 2008, 87, 2322−2333.spa
dcterms.bibliographicCitation(48) Bozzano, G.; Dente, M.; Carlucci, F. The effect of naphthenic components in the visbreaking modeling. Comput. Chem. Eng. 2005, 29, 1439−1446spa
dcterms.bibliographicCitation(49) Stratiev, D.; Shishkova, I.; Tsaneva, T.; Mitkova, M.; Yordanov, D. Investigation of relations between properties of vacuum residual oils from different origin, and of their deasphalted and asphaltene fractions. Fuel 2016, 170, 115−129spa
dcterms.bibliographicCitation(50) Ancheyta-Juarez, J.; Lopez-Isunza, F.; Aguilar-Rodriguez, E. Correlations for predicting the effect of feedstock properties on catalytic cracking kinetic parameters. Ind. Eng. Chem. Res. 1998, 37, 4637−4640.spa
dcterms.bibliographicCitation(51) Nilsson, P.; Otterstedt, J. Effect of composition of the feedstock on the catalytic cracking of heavy vacuum gas oil. Appl. Catal. 1987, 33, 145−156.spa
dcterms.bibliographicCitation(52) Gao, J.; Xu, C.; Lin, S.; Yang, G.; Guo, Y. Simulations of gas− liquid−solid 3-phase flow and reaction in FCC riser reactors. AIChE J. 2001, 47, 677−692.spa
dcterms.bibliographicCitation(53) Passamonti, F.; de La Puente, G.; Gilbert, W.; Morgado, E.; Sedran, U. Comparison between fixed fluidized bed (FFB) and batch fluidized bed reactors in the evaluation of FCC catalysts. Chem. Eng. J. 2012, 183, 433−447.spa
dcterms.bibliographicCitation(54) Meirer, F.; Kalirai, S.; Morris, D.; Soparawalla, S.; Liu, Y.; Mesu, G.; Andrews, J.; Weckhuysen, B. Life and death of a single catalytic cracking particle. Sci. Adv. 2015, 1, e1400199spa
dcterms.bibliographicCitation(55) Falco, M.; Morgado, E.; Amadeo, N.; Sedran, U. Accessibility in alumina matrices of FCC catalysts. Appl. Catal., A 2006, 315, 29−34.spa
dcterms.bibliographicCitation(56) Garcia, J. R.; Bertero, M.; Falco, M.; Sedran, U. Catalytic cracking of bio-oils improved by the formation of mesopores by means of Y zeolite desilication. Appl. Catal., A 2015, 503, 1−8.spa
dcterms.bibliographicCitation(57) Garcia, J. R.; Falco, M.; Sedran, U. Intracrystalline mesoporosity over Y zeolites: PASCA evaluation of the secondary cracking inhibition in the catalytic cracking of hydrocarbons. Ind. Eng. Chem. Res. 2017, 56, 1416−1423.spa
dcterms.bibliographicCitation(58) Garcia, J. R.; Falco, M.; Sedran, U. Intracrystalline mesoporosity over Y zeolites. Processing of VGO and resid-VGO mixtures in FCC. Catal. Today 2017, 296, 247−253spa
dcterms.bibliographicCitation(59) Bertero, M.; Garcia, J. R.; Falco, M.; Sedran, U. Equilibrium FCC catalysts to improve liquid products from biomass pyrolysis. Renewable Energy 2019, 132, 11−18.spa
dcterms.bibliographicCitation(60) Bertero, M.; Garcia, J. R.; Falco, M.; Sedran, U. Conversion of cow manure pyrolytic tar under FCC conditions over modified equilibrium catalysts. Waste Biomass Valorization 2020, 11, 2925− 2933.spa
dcterms.bibliographicCitation(61) Mochizuki, H.; Yokoi, T.; Imai, H.; Namba, S.; Kondo, J. N.; Tatsumi, T. Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking. Appl. Catal., A 2012, 449, 188−197.spa
dcterms.bibliographicCitation(62) Stratiev, D.; Galkin, V.; Shishkova, I.; Minkov, D.; Stanulov, K. Yield of products from catalytic cracking of vacuum gasoils. Chem. Technol. Fuels Oils 2007, 43, 311−318.spa
dcterms.bibliographicCitation(63) Jacobs, P. A.; Martens, J. A. Chapter 12 introduction to acid catalysis with zeolites in hydrocarbon reactions. Stud. Surf. Sci. Catal. 1991, 58, 445−496.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.audiencePúblico generalspa
dc.identifier.doi10.1021/acs.energyfuels.0c02804
dc.identifier.instnameUniversidad del Atlánticospa
dc.identifier.reponameRepositorio Universidad del Atlánticospa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.type.spaArtículospa
dc.publisher.placeBarranquillaspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.publisher.sedeSede Nortespa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

UNIVERSIDAD DEL ATLÁNTICO

Institución Pública de Educación Superior | Sujeta a la inspección y vigilancia del Ministerio de Educación Nacional | Nit. 890102257-3
Sede Norte: Carrera 30 Número 8- 49 Puerto Colombia - Atlántico | Sede Centro: Carrera 43 Número 50 - 53 Barranquilla- Atlántico.
Bellas Artes- Museo de Antropología: Calle 68 Número 53- 45 Barranquilla- Atlántico | Sede Regional Sur: Calle 7 No. 23-5 Barrio Abajo Suan- Atlántico
Línea de atención: PBX: (57) (5) 3852266 | Atlántico- Colombia | © Universidad del Atlántico
#UniversidadDeTodos

Resolución de lineamientos del repositorio - Estatuto de propiedad intelectual - Formato para trabajos de grado - Politicas Repositorio Institucional

Tecnología DSpace implementada por