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Abstract

In this work, we investigate the consequences of the Renormalization Group Equation (RGE) in the 
determination of the effective potential and the study of Dynamical Symmetry Breaking (DSB) in an Gross-
Neveu (GN) model with N fermions fields in (1 + 1) dimensional space-time, which can be applied as a 
model to describe certain properties of the polyacetylene. The classical Lagrangian of the model is scale 
invariant, but radiative corrections to the effective potential can lead to dimensional transmutation, when a 
dimensionless parameter (coupling constant) of the classical Lagrangian is exchanged for a dimensionful 
one, a dynamically generated mass for the fermion fields. For the model we are considering, perturbative 
calculations of the effective potential and renormalization group functions up to three loops are available, 
but we use the RGE and the leading logs approximation to calculate an improved effective potential, in-
cluding contributions up to six loops orders. We then perform a systematic study of the general aspects of 
DSB in the GN model with finite N, comparing the results we obtain with the ones derived from the original 
unimproved effective potential we started with.
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1. Introduction

In quantum field theory Dynamical Symmetry Breaking (DSB) is a key mechanism that has 
applications in particle physics and condensed matter systems [1–3], where quantum corrections 
are entirely responsible for the appearance of nontrivial minima of the effective potential. In the 
case of particle physics, for example, we have a Higgs mechanism playing a fundamental role in 
the Standard Model: in this case, the symmetry breaking requires a mass parameter in the tree-
level Lagrangian, but Coleman and Weinberg (CW) demonstrated [4] that spontaneous symmetry 
breaking may occur due to radiative corrections even when this mass parameter is absent from the 
Lagrangian (which is, therefore, scale invariant). For the study of the CW mechanism, we need 
to calculate the effective potential, a powerful tool to explore many aspects of the low-energy 
sector of a quantum field theory. In many cases, the one-loop approximation is good enough, but 
it can be improved it, by adding higher order contributions in the loop expansion. A standard tool 
for improving a perturbative calculation performed up to some loop level is the Renormalization 
Group Equation (RGE) which, together with a reorganization of the perturbative results in terms 
of leading logs, have been shown to be very effective [5–10]. We refer the reader to section 3 in 
[8] for a short review of the method, and [11–15] for some of the interesting results that have 
been reported with the use of the RG improvement.

The Gross-Neveu (GN) model with N = 2 fermions has great relevance in the study of 
the polyacetylene, (CH)x , which is a polymer with conductive properties which are acquired 
through doping [16]. Polyacetylene is a straight chain that can have two forms, trans and cis. 
The trans form (trans-polyacetylene), which is the most stable, has a doubly degenerate ground 
state. These circumstances allow the existence of topological excitations, which entails a great 
phenomenological richness in this type of models. In [3,17] it was shown that in the continuous 
limit, and in the approximation where the dynamical vibration of lattice (phonons) is ignored, 
the metal-insulator transition in the polyacetylene can be described by the GN model in N = 2. 
In addition, the polyacetylene exhibits some remarkable effects, such as the Peierls mechanism 
[18], which is the generation of an energy gap for electrons through the coupling with phonons. 
This mechanism is analogous to the Yukawa interaction in the Standard Model.

The GN model can be seen as an effective low energy theory for the polyacetylene. This 
was shown by the Takayama-Lin-Liu-Maki (TLM) model [17], where the effective low-energy 
theories of the Su-Schrieffer-Heeger (SSH) model [19] are described by a theory of four fermions 
fields in (1 + 1) dimensions. In this model the behavior of the energy band (gap) � is described 
as,

� = W exp
(
−πvf w2

Q/g2
T LM

)
, (1)

where W is the width of the energy band, vf is the Fermi velocity, w2
g/g

2
T LM is the coupling 

constant between the electron and phonons. If the adiabatic approximation is used in the TLM 
model, then it can be related to the GN model, and therefore, we can find an expression analogous 
to Eq. (1), which is related to the mass obtained in GN by symmetry breaking,

m = gGNσ0 = 2� exp
(
−π/Ng2

GN

)
, (2)

σ0 being a constant scalar field and � a renormalization scale, which is not a physical parameter, 
and therefore the only quantity that is measured is the mass, m. On the other hand, if we compare 
this with its analog, Eq. (2), � and W are parameters measured in (CH)x . Now comparing (1)
and (2) we can observe a relationship between the coupling constants,
2
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g2
GN = g2

T LM

2vf w2
Q

, (3)

where we have replaced N = 2, which is the relevant value for the description of the polyacety-
lene.

Our goal here is to study, via radiative corrections, the generation of mass by DSB. In this 
case the mass will be obtained by

m2
σ = d2

dσ 2 Veff (σ )

∣∣∣∣
σ=μ

, (4)

where μ is the renormalization scale introduced in our model by regularization, and Veff (σ ) is 
the effective potential which is a function of the (classical) scalar field σ .

In this paper, we considered the three loops calculation of renormalization group functions and 
effective potential for the (1 + 1) dimensional GN model with finite N (that is to say, without re-
course to the 1/N expansion) that have been described in [20]. The RGE is then used to improve 
this calculation, incorporating terms that originate from higher loop orders (up to six). Then, we 
study the DSB properties of the model using the unimproved (directly obtained by perturbative 
calculations) and RGE improved effective potentials, and we observe that the improvement of the 
effective potential leads to relevant differences in comparison with the unimproved one found in 
the literature.

There have been many studies of the (1 + 1) GN model in the literature, usually considering 
the 1/N expansion. In this regard, Ref. [21] presents a nice review of leading and sub-leading 
orders in this expansion, at finite temperature. The phase diagram for the model has been first 
established in Ref. [22], and recently revised by lattice computations [23–26]. Another recent 
study of this phase diagram, using mean-field techniques, is presented in [27]. Finally, studies 
using the functional renormalization group have also been reported [27]. Our approach is com-
plementary, for not resorting to the 1/N expansion, thus being particularly adequate for models 
with small N ; on the other hand, it is inherently perturbative. It is also interesting to notice that 
we work at zero temperature and chemical potential, so we investigate a single point in the phase 
diagram that was discussed in the above-mentioned works. But, at this single point, we are able to 
perform calculations analytically. Generalizations for finite temperature and chemical potential 
are possible, but not trivial, and are left for future works.

This paper is organized as follows: in section 2 we present our model with the renormaliza-
tion group functions and unimproved effective potential found in the literature. In section 3 we 
calculate the improvement of effective potential using the standard approach of RGE, and sec-
tion 4 is devoted to study DSB in our model. In section 5 we present our conclusions and future 
perspectives.

2. Renormalization group functions and unimproved effective potential for Gross-Neveu 
model

We start with the Euclidean formulation of the massless (1 + 1) dimensional GN model stud-
ied by Luperini and Rossi [20] whose Lagrangian with N fermions fields and U (N) symmetry 
is,

L1 = ψ /∂ψ − 1

2
g

(
ψψ

)2
. (5)
3
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This model has a discrete γ5 invariance ψ → exp
[
(π/2) γ5

]
ψ , whose spontaneous breakdown 

leads to a nonzero vacuum expectation value 
〈
ψ̄ψ

〉
and thus to a dynamical mass generation [1]. 

Also, the model is known to be asymptotically free in two dimensions, and can be extended to,

L2 = ψ̄ /∂ψ + σψ̄ψ + 1

2

σ 2

g
− 1

2
h

(
ψ̄ψ

)2
, (6)

where σ is the scalar field, ψ is the fermion field, g and h are dimensionless coupling con-
stants that appear with the introduction of the auxiliary field σ , which carries the same quantum 
numbers as ψ̄ψ , i.e. σ = −gψ̄ψ . The Lagrangians L1 and L2 are equivalent both at classical 
level (using the equations of motion for σ in (6) to obtain (5)) as well as at the quantum level, 
since a gaussian integration over σ in the partition function calculated from (6) leads to the same 
partition function derived by (5).

The renormalization group functions β and γ were calculated for this model up to three loop 
order (see the Ref. [20] for more details), and we quote the result,

βg (g,h) = β(2)
g (g,h) + β(3)

g (g,h) + β(4)
g (g,h) , (7)

where

β(2)
g (g,h) = (1 − 2N)gh + (1 − N)g2, (8a)

β(3)
g (g,h) =

(
N − 1

2

)
g2h + 1

4
(2N − 1) g3 + 1

4
(2N − 1) gh2, (8b)

β(4)
g (g,h) = 1

16

(
3 − 7N + 2N2

)
g4 + 9

16

(
1 − 3N + 2N2

)
g2h2

+ 3

16

(
3 − 8N + 4N2

)
g3h + 1

16

(
3 − 10N + 8N2

)
gh3, (8c)

βh (g,h) = β
(2)
h (g,h) + β

(3)
h (g,h) + β

(4)
h (g,h) , (9)

where

β
(2)
h (g,h) = gh + (1 − N)h2, (10a)

β
(3)
h (g,h) = −1

4
g3 + 1

2
(N − 2) g2h +

(
N − 5

4

)
gh2 − 1

2
(1 − N)h3, (10b)

β
(4)
h (g,h) = 1

16
(25 − 26N)gh3 + 1

8
(2 − N)g4 + 1

16

(
19 − 12N − 4N2

)
g3h

+ 1

16

(
7 − 9N + 2N2

)
h4 − 3

16

(
−11 + 9N + 2N2

)
g2h2, (10c)

γσ (g,h) = γ (1)
σ (g,h) + γ (2)

σ (g,h) + γ (3)
σ (g,h) , (11)

where

γ (1)
σ (g,h) = −1

2
g +

(
N − 1

2

)
h, (12a)

γ (2)
σ (g,h) = 1

8
(1 − 2N)g2 + 1

4
(1 − 2N)gh + 1

8
(1 − 2N)h2, (12b)

γ (3)
σ (g,h) = 9

32
(2N − 1) g2h + 1

32

(
−3 + 10N − 8N2

)
h3

− 3

32

(
3 − 8N + 4N2

)
gh2 + 1

32

(
−3 + 4N + 4N2

)
g3, (12c)
4
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and

γR (g,h) = γ
(1)
R (g,h) + γ

(3)
R (g,h) , (13)

with

γ
(1)
R (g,h) =N g, (14a)

γ
(3)
R (g,h) = 3

16
(1 − 2N)Ng3 + 3

8
(1 − 2N)N g2h + 3

16
(1 − 2N)N gh2. (14b)

In the previous equations, the superscript mean the global power of coupling constant in each 
term. This notation will be usefull to organize the terms for the calculation of the improved 
version of the effective potential, in the next section.

The effective potential was also calculated up to three loops, in the minimal subtraction (MS) 
scheme, as follows,

V U
eff (σ ) = σ 2

2g π
SU

eff (σ ;g,h,L) , (15)

with

SU
eff (σ ;g,h,L) = A(0) + A(1) + A(3) +

(
3

16
(1 − 2N)Ng3 + 3

8
(1 − 2N)Ng2h

+ 3

16
(1 − 2N)Ngh2 + Ng

)
L +

(
1

8
N (2N + 1) g3 + 1

4

(
N − 2N2

)
g2h

+g2

2
N + 1

8
N

(
8N2 − 6N + 1

)
gh2 + 1

2
(1 − 2N)Ngh

)
L2

+
(

−1

6
(N − 2)Ng3 + 2

3
(1 − 2N)Ng2h + 1

6
N

(
6N2 − 7N + 2

)
gh2

)
L3,

(16)

where

L ≡ ln

[
σ

μ

]
, (17)

μ being the mass scale that is introduced to keep the dimensions of the relevant quantities un-
changed, and

A(0) = 1, A(1) = −N

2
g,

A(3) = − 1

96
(28ζ (3) − 9)N (2N − 1)

(
gh2 + g3 + 2g2h

)
, (18)

where ζ (3) � 1.202 is known as Apéri constant.

3. Improvement of effective potential for the GN model

In this section we compute the improvement of effective potential of the model defined by the 
Lagrangian (6). We start with

V I
eff (σ ) = σ 2

2g π
SI

eff (σ ;g,h,L) , (19)
5
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where SI
eff is a function that remains to be determined. On dimensional grounds, we can assume 

the following Ansatz,

SI
eff = A(g,h) + B (g,h)L + C (g,h)L2 + D (g,h)L3, (20)

where L is given by Eq. (17), and the coefficients A, B , C and D are functions only of the 
(dimensionless) coupling constants. The main idea behind the method is the observation that 
the coefficients in (20) are not all independent, since changes in μ must be compensated for by 
changes in the other parameters, according to the renormalization group. This is the same as 
saying that the effective potential has to satisfy a RGE. Following the procedure in [5,8,10], and 
using the conventions given in [20] and quoted in the last section, we can write the RGE for SI

eff
in the form

[
− (1 + γσ (g,h))

∂

∂L
+ βg (g,h)

∂

∂g
+ βh (g,h)

∂

∂h
+ γR (g,h)

]
SI

eff (σ ;g,h,L) = 0,

(21)

where the renormalization group functions are defined by equations (7), (9), (11) and (13).
One should note, at this point, that these functions were computed [20] in the MS scheme. 

In principle, they should be adapted to a different scheme for our applications – however, as 
discussed in [8], this is not necessary when UV divergences appear at second or higher loop 
level, as it is the present case. Therefore, this issue does not have to be dealt with and, for our 
purposes, we can directly apply the renormalization group equations obtained in [20] for the 
RGE improvement.

If we use the Ansatz in Eq. (20) together with Eq. (21), it is possible to calculate recursively, 
order by order in the coupling constants, the functions A (g,h), B (g,h), C (g,h) and D (g,h). 
In particular, A (g,h) is fixed by the tree-level effective potential, Eq. (18), in the form

A(g,h) = A(0) + A(1) + A(3), (22)

where A(i) with i = 0, 1, 3 are known functions, and again the superscript represents the global 
power of coupling constants in each term. Following the same pattern, we want to calculate the 
remaining functions order by order in coupling constants, so we also write,

B (g,h) = B(0) + B(1) + B(2) + B(3) + B(4) + B(5) + B(6) + · · · , (23)

C (g,h) = C(0) + C(1) + C(2) + C(3) + C(4) + C(5) + C(6) + · · · , (24)

D (g,h) = D(0) + D(1) + D(2) + D(3) + D(4) + D(5) + D(6) + · · · . (25)

Terms of O
(
L0

)
in the RGE correspond to the function B (g,h) in the Ansatz (20). These can be 

calculated from our knowledge of A (g,h) and the renormalization group functions. To do that, 
we substitute (20) into (21) and separate the terms proportional to L0, obtaining the following 
expression,

− (1 + γσ (g,h))B (g,h) +
[
βg (g,h)

∂

∂g
+ βh (g,h)

∂

∂h
+ γR (g,h)

]
A(g,h) = 0. (26)

Substituting (22) and (23), together with the renormalization group functions, Eqs. (7), (9), (11)
and (13), into (26) leads us to the following expression,
6
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−
(

1 + γ (1)
σ + γ (2)

σ + γ (3)
σ

)(
B(0) + B(1) + B(2) + B(3) + B(4) + ...

)
+

+
[(

β(2)
g + β(3)

g + β(4)
g

) ∂

∂g
+

(
β

(2)
h + β

(3)
h + β

(4)
h

) ∂

∂h
+

+ γ
(1)
R + γ

(3)
R

](
A(0) + A(1) + A(3)

)
= 0, (27)

and from the previous equation, we can obtain,

B(0) = 0, (28a)

B(1) = −γ (1)
σ B(0) + γ

(1)
R A(0) = Ng, (28b)

B(2) = −γ (2)
σ B(0) − γ (1)

σ B(1) +
[
β(2)

g

∂

∂g
+ β

(2)
h

∂

∂h
+ γ

(1)
R

]
A(1) = 0, (28c)

B(3) = −γ (3)
σ B(0) − γ (2)

σ B(1) − γ (1)
σ B(2) +

[
β(3)

g

∂

∂g
+ β

(3)
h

∂

∂h

]
A(1) + γ

(3)
R A(0)

= 3

16
(1 − 2N)N

{
g3 + 2g2h + gh2

}
, (28d)

B(4) = −γ (3)
σ B(1) − γ (2)

σ B(2) − γ (1)
σ B(3) +

[
β(4)

g

∂

∂g
+ β

(4)
h

∂

∂h
+ γ

(3)
R

]
A(1)

+
[
β(2)

g

∂

∂g
+ β

(2)
h

∂

∂h
+ γ

(1)
R

]
A(3)

= 1

48
N (2N − 1)

{
[−42ζ (3) + (28ζ (3) − 9)N + 9]g4

+ [−126ζ (3) + (112ζ (3) − 27)N + 27]g3h

+ [−126ζ (3) + (140ζ (3) − 27)N + 27]g2h2

+ [−42ζ (3) + (56ζ (3) − 9)N + 9]gh3
}

, (28e)

B(5) = −γ (3)
σ B(2) − γ (2)

σ B(3) − γ (1)
σ B(4) +

[
β(3)

g

∂

∂g
+ β

(3)
h

∂

∂h

]
A(3)

= − 7

96
ζ (3)

(
4N2 − 1

)
g5

− N (2N − 1)

{
1

48

(
14ζ (3) + (28ζ (3) − 9)N2 + (9 − 28ζ (3))N

)
g4h

+ 1

48

(
21ζ (3) + (112ζ (3) − 27)N2 − 9 (14ζ (3) − 3)N

)
g3h2

+ 1

48

(
14ζ (3) + (140ζ (3) − 27)N2 + (27 − 140ζ (3))N

)
g2h3

+ 1

96

(
7ζ (3) + 2 (56ζ (3) − 9)N2 + (18 − 98ζ (3))N

)
gh4

}
, (28f)

B(6) = −γ (3)
σ B(3) − γ (2)

σ B(4) − γ (1)
σ B(5) +

[
β(4)

g

∂

∂g
+ β

(4)
h

∂

∂h
+ γ

(3)
R

]
A(3),

= N (2N − 1)

{
1 (

−182ζ (3) + 2 (56ζ (3) − 9)N2 + (28ζ (3) − 27)N + 45
)

g6
768

7
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+ 1

768

(
−910ζ (3) + 2(196ζ (3) − 9)N2 + 3(224ζ (3) − 69)N + 225

)
g5h

+ 1

384

(
−910ζ (3) + 8 (28ζ (3) − 9)N3 − 42 (8ζ (3) − 3)N2

+ (1204ζ (3) − 279)N + 225
)

g4h2

+ 1

384

(
−910ζ (3) + 8 (112ζ (3) − 27)N3 + (342 − 1624ζ (3))N2

+ (1736ζ (3) − 351)N + 225
)

g3h3

+ 1

768

(
−910ζ (3) + 16 (140ζ (3) − 27)N3 + (630 − 3472ζ (3))N2

+ 9 (252ζ (3) − 47)N + 225
)

g2h4

+ 1

768

(
−182ζ (3) + 16 (56ζ (3) − 9)N3 − 6 (196ζ (3) − 33)N2

+ (560ζ (3) − 99)N + 45
)

gh5
}

. (28g)

For the purpose of this paper, we will only consider terms up to sixth order in the coupling 
constants because we only know the β function up to four order.

Terms of O (L) in the RGE will lead to the calculation of the C’s in (24) from the knowledge 
we already have from the perturbative calculations, as well as the B’s that we just obtained. 
Repeating the same procedure as before, we find the following results,

C(0) = C(1) = 0, (29a)

C(2) = N

2
g2 + 1

2

(
N − 2N2

)
gh (29b)

C(3) = 1

8
N (2N + 1) g3 + 1

4

(
N − 2N2

)
g2h + 1

8
N

(
8N2 − 6N + 1

)
gh2, (29c)

C(4) = 1

8
N

(
2N2 − 5N + 3

)
g4 + 1

8
N

(
8N2 − 22N + 9

)
g3h

+ 1

8
N

(
22N2 − 29N + 9

)
g2h2 + 1

8
N

(
−8N3 + 16N2 − 12N + 3

)
gh3, (29d)

C(5) = 1

384
N

(
21 (32ζ (3) − 5) − 24 (28ζ (3) − 9)N3 + 224 (10ζ (3) − 3)N2

+ (540 − 2296ζ (3))N
)

g5

− N (2N − 1)

{
1

96

(
21 (32ζ (3) − 5) + 8 (56ζ (3) − 15)N2

− 4 (287ζ (3) − 66)N
)

g4h

+ 1

64

(
21 (32ζ (3) − 5) + 8 (77ζ (3) − 15)N2 − 6 (224ζ (3) − 33)N

)
g3h2

+ 1

96

(
21 (32ζ (3) − 5) + 12 (70ζ (3) − 1)N2 − 44 (35ζ (3) − 3)N

)
g2h3

− 1 (
−672ζ (3) + 192N3 − 4 (280ζ (3) + 51)N2
384

8
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+ 2 (868ζ (3) − 33)N + 105
)

gh4
}

, (29e)

C(6) = 1

1536
N

(
448ζ (3) + 96 (14ζ (3) − 1)N3 + (60 − 2016ζ (3))N2

− 32 (7ζ (3) + 6)N + 141
)

g6

+ N (2N − 1)

{
1

1536

(
−5 (448ζ (3) + 141) + 96 (28ζ (3) − 9)N3

+ (2244 − 5152ζ (3))N2 + (4816ζ (3) − 996)N
)

g5h

+ 1

768

(
−5 (448ζ (3) + 141) + 24 (308ζ (3) − 87)N3

+ (4656 − 18032ζ (3))N2 + 2 (6496ζ (3) − 771)N
)

g4h2

+ 1

768

(
−5 (448ζ (3) + 141) + 40 (392ζ (3) − 87)N3 + (6036 − 35280ζ (3))N2

+72 (294ζ (3) − 29)N
)

g3h3 + 1

1536

(
−5 (448ζ (3) + 141)

+ 16 (1820ζ (3) − 183)N3 − 112 (508ζ (3) − 57)N2

+ (29344ζ (3) − 2634)N
)

g2h4 − 1

1536

(
448ζ (3) + 768N4

− 112 (88ζ (3) + 3)N3 + 4 (4144ζ (3) − 285)N2

+ (636 − 7504ζ (3))N + 141
)

gh5
}

, (29f)

Going to O
(
L2

)
in the RGE, we can find all the D’s in (25), and the result is,

D(0) = D(1) = D(2) = 0 (30a)

D(3) = −1

6
(N − 2)Ng3 + 2

3
(1 − 2N)Ng2h + 1

6
N

(
6N2 − 7n + 2

)
gh2 (30b)

D(4) = 1

6

(
−N3 + 2N2 + N

)
g4 − 1

4
N

(
2N2 + 3N − 2

)
g3h

+ 1

2
N

(
6N2 − 5N + 1

)
g2h2 + 1

12
N

(
−28N3 + 40N2 − 17N + 2

)
gh3 (30c)

D(5) = 1

96
N

(
−24N3 + 94N2 − 107N + 57

)
g5

+ 1

48
N

(
−48N3 + 206N2 − 319N + 114

)
g4h

+ 1

16
N

(
−30N3 + 211N2 − 212N + 57

)
g3h2

+ 1

48
N

(
−468N3 + 836N2 − 529N + 114

)
g2h3

+ 1

96
N

(
384N4 − 828N3 + 724N2 − 317N + 57

)
gh4, (30d)
9
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D(6) = 1

288
N

(
840ζ (3) + 24 (28ζ (3) − 9)N4 + (948 − 3080ζ (3))N3

+52 (98ζ (3) − 27)N2 + (786 − 3542ζ (3))N − 93g6
)

+ N (2N − 1)

{
1

96

(
−1400ζ (3) + 2 (364ζ (3) − 99)N3

+ (724 − 2828ζ (3))N2 + (3542ζ (3) − 766)N + 155
)

g5h + 1

144

(
−4200ζ (3)

+ 15 (196ζ (3) − 45)N3 + (2118 − 10612ζ (3))N2 + 14 (853ζ (3) − 114)N

+ 465
)

g4h2 + 1

144

(
−4200ζ (3) + (4116ζ (3) − 699)N3

− 22 (602ζ (3) − 39)N2 + 2 (6629ζ (3) − 447)N

+465
)

g3h3 + 1

96

(
−1400ζ (3) + 2 (980ζ (3) + 263)N3 − 4 (1365ζ (3) + 134)N2

+ (4858ζ (3) − 64)N + 155
)

g2h4 − 1

288

(
840ζ (3) + 864N4 −1680 (ζ (3) + 1)N3

+44 (91ζ (3) + 24)N2 − 2 (1589ζ (3) + 51)N − 93
)

gh5
}

. (30e)

Finally, with the values of A, B, C and D that have been obtained, we obtain V I
eff (σ ), which 

we call the improved effective potential, since it contains higher-orders (in the coupling con-
stants) terms that were obtained from the RGE, and beyond what can be obtained by direct loop 
calculation, as presented in Sec. 2. Notice that it is possible to obtain the unimproved version 
of the effective potential, V U

eff (σ ), that was calculated up to three loop order in [20] by setting 
B4 = B5 = B6 = 0, C4 = C5 = C6 = 0 and D4 = D5 = D6 = 0. This is a proof of the consistency 
of our calculations.

4. Dynamical symmetric breaking

We start this section analyzing the behavior of the DSB for the unimproved and improved 
versions of the effective potential, Eq. (15). First, one has to recognize that the effective potentials 
that we computed actually correspond to the regularized effective potential, and we still need to 
fix a finite renormalization constant that is introduced via

V
U/I

eff,R (σ ) =V
U/I

eff (σ ) + σ 2ρ, (31)

where ρ can be fixed with the Coleman-Weinberg (CW) [4] condition,

d2

dσ 2 V
U/I

eff,R (σ )

∣∣∣∣
σ=μ

= 1

g
. (32)

The second step is to enforce that V U/I

eff,R (σ ) has a minimum at σ = μ. This is done imposing 
the condition,

d

dσ
V

U/I

effR (σ )

∣∣∣∣
σ=μ

= 0, (33)
10
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together with

m2
σ = d2

dσ 2 V
U/I

eff,R (σ )

∣∣∣∣
σ=μ

= 1

g
> 0, (34)

where m2
σ is the mass generated by radiative corrections for the σ scalar field. It is interesting 

to notice that, here, this last condition (34) is actually equivalent to the CW condition, that is to 
say, Eq. (34) is automatically satisfied once (32) is enforced. The same does not happen in other 
models that were studied within this approach, such as [8,11,15,28], where Eq. (34) provides an 
additional selection rule to be considered when looking into solutions for Eq. (33).

From a computational point of view, since we want to study the general properties of the 
DSB mechanism in this model for a wide range of the values of its coupling constants, we will 
use Eq. (33) to fix the value of the constant gI as a function of h and N , which will remain 
as free parameters. Also, at this point, the rescaling g → g/π and h → h/π suggested in [20]
was implemented. Upon explicit calculation, Eq. (33) turns out to be a polynomial equation in 
gI , and among its solutions we look for those which are real and positive, and which lie in the 
perturbative regime, g < 1.

To analyze the DSB in our model both for the unimproved and improved cases, we created 
a program in Mathematica© to systematically apply the previous steps for arbitrary values of 
the free parameters. In other words: for any reasonable value of h and N , we apply the CW 
condition, Eq. (32), to fix the renormalization constant ρ, then we use Eq. (33) to find solutions 
of g in terms of h and N , from which we separate the physical solutions that are real and positive, 
and also satisfy g < 1 to ensure we are within the perturbative regime. Any solution with g > 1 is 
discarded as nonphysical, since our approach is inherently perturbative. This procedure is applied 
both for the unimproved and improved regularized effective potentials, for the sake of comparing 
both cases, and we denote as gI the value of the coupling constant g obtained with the improved 
potential, and gU with the unimproved one.

As a first step, the parameters space in which the DSB is operational was found by scanning 
the whole parameter space determined by 0 ≤ h ≤ 1 and 0 ≤ N ≤ 1000, and obtaining a region 
plot showing where the DSB occurs (i.e., the region where the previously explained procedure 
yields consistent minima away from the origin). These plots are presented in the Fig. 1, both 
for the unimproved (Fig. 1a) and improved (Fig. 1b) cases. As we can see, the parameter space 
for which the DSB is possible in the improved case is much smaller than the unimproved one, 
which is consistent with previous results in this type of studies, for example in three and four 
dimensional space-time models [8,9,15].

We also observed the existence of more than one possible solution for gI and gU for a given 
value of h and N . For this, the coupling constants for both cases were plotted as a function of h
in the interval of 0 ≤ h ≤ 0.8 for different fixed values of N , as shown in Fig. 2.

It is interesting to note that for N = 3 (Fig. 2a), there is a single solution for g in both cases. 
Also, we note that there is a very small difference between gI and gU for an interval of values of 
0 ≤ h ≤ 0.1. However, we can consider an example where it is possible to observe the behavior 
between the minimum of improved and unimproved effective potentials, for the values of gI =
0.9073 and gU = 0.9579 respectively, corresponding to N = 3 and h = 0.05, as we shown in the 
Fig. 3.

On the other hand, if we analyze the cases N = 10, N = 20, and N = 30, which are shown in 
Figs. 2b to 2d, we observe that they present more than one value for gI , while gU continues with 
a single value. We note that a set of values of gI only appear for small values of h and these tend 
to decrease as N increases. To observe the effects of these values on the minimum of potentials, 
11



Fig. 1. The region plots of N vs. h showing the parameter space in which it is possible to find the values of the im-
proved and unimproved coupling constants, gI and gU , respectively, in which the effective potential leads to consistent 
perturbative DSB. The Fig. 1a is for the unimproved case and the Fig. 1b is for the improved case.

we consider an example where N = 10, h = 0.06, gI
1 = 0.6771, gI

2 = 0.3554 and gU = 0.3610, 
as we shown in Fig. 4. We observe that there is not much difference in the minimum of the 
effective potential for the values of gI

2 and gU considered in this example. Finally, the plot in 
Fig. 4 also exemplifies the fact that, for several of the solutions defined by gU and gI , the point 
σ = μ is actual a meta-stable local minima, and not the global minima, which actually appears 
for 0 < σ < μ.

It is interesting to note the deep differences in the general properties of the DSB mechanism, 
and quantitative aspects of the mechanism, in the case of the improved effective potential. We 
also point out that our results are in general compatible with the results obtained in three and 
four dimensional space-time models, where the improved effective potential was also calculated 
from the RGE, in the approximation of leading logarithms [6–10,15,28].
A.G. Quinto, R. Vega Monroy and A.F. Ferrari Nuclear Physics B 984 (2022) 115959
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Fig. 2. The graphs of g
(

10−2
)

vs. h represent the behavior of the improved, gI (red line), and unimproved, gU (blue 
line) coupling constants as a function of h for certain values of N (N = 3, N = 10, N = 20 and N = 30). In Fig. 2a, 
the graph that describes the behavior of the coupling constants as a function of h is shown for the case N = 3, we can 
note that in this particular case, there are only unique solutions for the values of gI and gU for an interval of values of 
0 ≤ h ≤ 0.1. On the other hand, in the graphs presented in the Figs. 2b - 2d, we observe two possible values for gI , where 
the second solution only appears for small values of h decreases as N increases.

Fig. 3. The graph of V U/I
eff (σ ) vs. σ/μ, where the behaviors of the minimum of improved (yellow) and unimproved (blue) 

effective potentials are compared for the values of gI = 0.9073 and gU = 0.9579, respectively, which were obtained from 
the region plot, Fig. 1, when we take the values of h = 0.05 and N = 3. These values are replaced in the unimproved and 
improved effective potentials, Eqs. (15) and (19) respectively, and these are evaluated in the interval 0 ≤ σ/μ ≤ 1.8.
13
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Fig. 4. The graph of V U/I
eff (σ ) vs. σ/μ, where the minima of the effective potentials are compared for the unimproved 

(blue) and improved (yellow) cases. We can see the presence of two improved and one unimproved effective potentials, 
this is due to the presence of two possible solutions for the improved case (see figure (2b)), gI

1 = 0.6771 and gI
2 = 0.3554, 

and a single solution for the unimproved case gU = 0.3610. In both cases, these solutions are related to the minimum of 
the effective potential for values of N = 10 and h = 0.06. These values were substituted in the Eqs. (15) and (19) which 
were evaluated in the interval 0 ≤ σ/μ ≤ 1.8.

We close this section by pointing out the fact that common artifacts of the perturbative cal-
culation of the effective potential are non-convexity and even instabilities (i.e., the potential not 
being bounded from below). One notable case of this last problem is the so-called conformal 
limit of the Standard Model, where the inclusion of the top quark contribution to the one loop 
perturbative effective potential lead to an unstable potential, a problem that was solved by sum-
ming up the leading logs corrections using the RGE [11]. Additional improvements of this idea 
were further developed, and actually led to a calculation of the Higgs mass of MH = 141 GeV, 
not far from the experimental value of 125 GeV [14]. We can also quote [29,30] for showing how 
an improved calculation of the effective potential may cure these ailments.

5. Conclusions

In this paper we have studied the behavior of the unimproved and improved effective potential 
in a massless (1 + 1) dimensional Gross-Neveu model with N fermions fields. We have observed 
that the improvement of the effective potential, which we calculated up to the sixth power of 
the coupling constants, leads to different results in comparison with the unimproved case. As 
a general rule, the use of the RGE allows us to obtain higher order corrections to the effective 
potential, based on the knowledge of the renormalization group functions calculated up to some 
loop level (three in the case we considered here [20]), and this could lead to a better understanding 
of the DSB mechanism.

We notice that the improvement that we have performed in this work has not been able to 
fully avoid such problems of the perturbative effective potential. We can see in Fig. 4 one of 
the improved potentials failing to be convex in the region between two local minima. These 
potentials might also become unstable for larger values of σ . We believe this comes from the fact 
that we were able to sum up only contributions up to six loop order in the V I

eff (σ ). A different 
summation scheme, closer to the one adopted in [11,28], might allow for summing up infinite 
sub-series of higher loop order contributions to V I

eff (σ ), and that would probably eliminate at 
least some of these problems. This is one topic we want to discuss in a future work.

Another interesting perspective is to incorporate a term associated with the chemical potential: 
usually this appears as a mass parameter associated with fermions, and it was not considered in 
the model studied here, since the RGE improvement is simpler when the starting Lagrangian is 
14
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scale invariant. It has been reported in the literature that the chemical potential is a key ingredient 
in the study of the polyacetylene properties, corresponding for example to the doping concentra-
tion, as discussed in [2,31–34] up to one loop order. Therefore, the idea would be to observe the 
behavior of the effective potential when it has an explicit dependence on the chemical potential at 
higher loop orders. This problem would involve a multi-scale approach to the RGE improvement, 
as discussed, for example, in [35,36]. The presence of a dimensional constant in the starting La-
grangian leads to the appearance of two independent logarithms in the perturbative expression 

for the effective potential since there would be, in general, contributions involving also ln
[

m
μ

]
, 

with m the fermion mass, related to the chemical potential. That is another topic we intent to 
investigate further.
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